HYOJOON ELECTRO MAGNETIC CLUTCH / BRAKE

LIST

2

2. HS SERIES CLUTCH & BRAKE: Dry Single Plate Type			HCBW type(Worm Reducer Integrated Clutch & Bro	
			Unit)	ng 19
			IMWC/HMWB SERIES: Wet Multi-plate Type	1.0
	Overview, Features, Applications, Torque Range Clutch & Brake Basic usage Characteristics		Overview, Features, Applications, Torque Range Structure & Operation. Wet Multi-plate Electromagnetic Clutch(HMWC)	
	Selection Basic structure Example on Installation		Wet Multi-plate Electromagnetic Brake Clutch Coupling	
	HC Series(Clutch): Flange Mounted Type pg.24 HC Series(Clutch): Bearing Mounted Type pg.29		Characteristics Example on Installation & Lubrication Matters	.pg.58
	HB Series(Brake)		IMZ SERIES ELECTROMAGNETIC TOOTH CLUTCH	
	HCB Clutch & Brake(Butt Shaft Construction)		Overview, Features, Applications, Torque Range	•pg.66
•••••	HCB Clutch & Brake(Through-shaft construction)		Structure & Dimension Precaution of Mounting & Use	
•••••	HCC type(Double Clutch Unit) pg.43		Example on Installation	
	HCCB type(Double Clutch & Brake Unit)		OWER SUPPLY	pg.73
	HCBM type(Motor Directly Connected Clutch & Brake Unit) pg.47			

ELECTROMAGNETIC

OVERVIEW

Electromagnetic clutches operate electrically but transmit torque mechanically. This is why they used to be referred to as electro-mechanical clutches. Over the years, EM became known as electromagnetic versus electro-mechanical, referring more about their actuation method versus physical operation. Since the clutches started becoming popular over 60 years ago, the variety of applications and clutch designs has increased dramatically, but the basic operation remains the same today.

Single-face clutches make up approximately 90% of all electromagnetic clutch sales.

Electromagnetic clutches are most suitable for remote operation since no mechanical linkages are required to control their engagement, providing fast, smooth operation. However, because the activation energy dissipates as heat in the electromagnetic actuator when the clutch is engaged, there is a risk of overheating. Consequently, the maximum operating temperature of the clutch is limited by the temperature rating of the insulation of the electromagnet. This is a major limitation. Another disadvantage is higher initial cost.

Applications

Machinery

This type of clutch is used in some lawnmowers, copy machines, and conveyor drives. Other applications include packaging machinery, printing machinery, food processing machinery, and factory automation.

Vehicles

When the electromagnetic clutch is used in automobiles, there may be a clutch release switch inside the gear lever. The driver operates the switch by holding the gear lever to change the gear, thus cutting off current to the electromagnet and disengaging the clutch. With this mechanism, there is no need to depress the clutch pedal. Alternatively, the switch may be replaced by a touch sensor or proximity sensor which senses the presence of the hand near the lever and cuts off the current. The advantages of using this type of clutch for automobiles are that complicated linkages are not required to actuate the clutch, and the driver needs to apply a considerably reduced force to operate the clutch. It is a type of semi-automatic transmission.

Electromagnetic clutches are also often found in AWD systems, and are used to vary the amount of power sent to individual wheels or axles.[1]

Most, but not all, automobile air conditioning systems are switched on and off by using an electromagnetic clutch. To activate the compressor the clutch is activated. This connects the air conditioning compressor's shaft end to a pulley driven by the engine's crankshaft through a belt.

Electromagnetic clutches have been used on diesel locomotives, e.g. by Hohenzollern Locomotive Works.

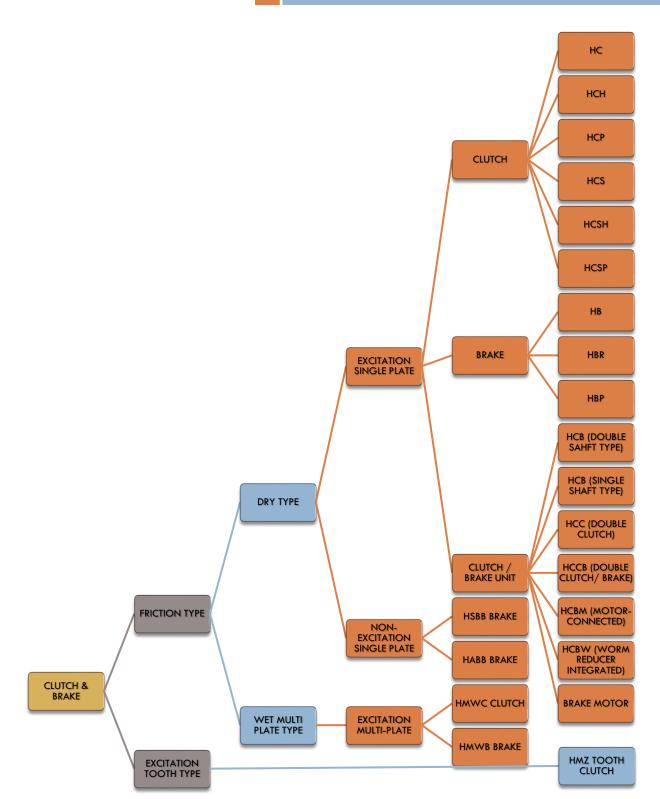
ELECTROMAGNETIC

Electromagnetic brakes or **EM brakes** are used to slow or stop vehicles using electromagnetic force to apply mechanical resistance (friction). They were originally called electro-mechanical brakes but over the years the name changed to "electromagnetic brakes", referring to their actuation method which is generally unrelated to modern electro-mechanical brakes. Since becoming popular in the mid-20th century, especially in trains and trams, the variety of applications and brake designs has increased dramatically, but the basic operation remains the same.

Both electromagnetic brakes and eddy current brakes use electromagnetic force, but electromagnetic brakes ultimately depend on friction whereas eddy current brakes use magnetic force directly.

Applications

1. In locomotives, a mechanical linkage transmits torque to an electromagnetic braking component.


2. Trams and trains use electromagnetic track brakes where the braking element is pressed by magnetic force to the rail. They are distinguished from mechanical track brakes, where the braking element is mechanically pressed on the rail.

3. Electric motors in industrial and robotic applications also employ electromagnetic brakes.

4. Recent design innovations have led to the application of electromagnetic brakes to aircraft applications. In this application, a combination motor/generator is used first as a motor to spin the tires up to speed prior to touchdown, thus reducing wear on the tires, and then as a generator to provide regenerative braking.

ELECTROMAGNETIC

PRODUCT CONFIGURATION

5

HYOJOON ELECTROMAGNETIC PRODUCTS

TYPES (CLUTCH)

HC

HCP

HCS

HCSH

HCSP

TYPES (BRAKE)

HBP

HYOJOON ELECTROMAGNETIC PRODUCTS

TYPES (CLUTCH / BRAKE UNIT)

HCB (DOUBLE SHAFT) HCB (DOUBLE SHAFT) HCC (DOUBLE CLUTCH)

HCCB (DOUBLE CLUTCH/BRAKE)

HYOJOON ELECTROMAGNETIC PRODUCTS

TYPES (WET MULTI-PLATE TYPE)

HMWC (CLUTCH)

HMWB (BRAKE)

TYPES (TOOTH CLUTCH)

NON-EXCITATION SINGLE PLATE

HMZ

FLODON

OVERVIEW

Electromagnetic clutches and electromagnetic brakes are devices that control power and rotary movement using an electromagnetic force generated by energizing coils. Clutches connect and disconnect with power while brakes brake and maintain rotary movement. It is possible to divide these into electromagnetic actuated types and spring actuated types depending on that method of operation.

Electromagnetic clutches and brakes that operate with an electromagnetic force are used for industrial purposes and are most frequently used in general among these types.

FEATURES, APPLICATION, TORQUE RANGE

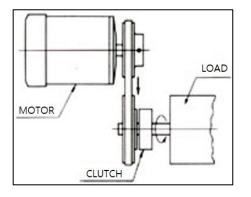
Adjustable Torque: Adjustable torque is used primarily for slip clutches and torque limiters. Users can adjust the torque at which the clutch disengages or slips.

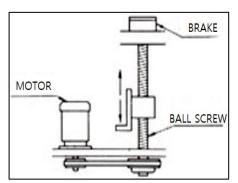
Zero Backlash: There is no play or backlash during the engagement of the load and no load disengagement during a direction reversal.

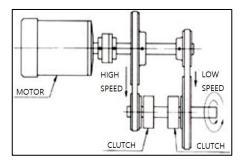
Washdown Capable: The housing is rated for washdown cleaning.

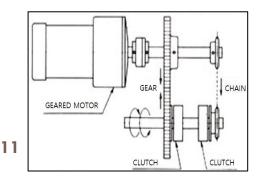
Bi-directional: Devices can be set-up to rotate in either direction.

Automatic Re-engagement: The clutch re-engages the load when the torque drops to an acceptable level.


Slip Indication: Slip indication can move a pin radially when an overload occurs, or send an electrical signal to the drive motor.


Feedback: Feedback provides an electrical or electronic signal for monitoring parameters such as position, speed, torque, lockup, or slip status


Electromagnetic clutches are used in many applications, including:


- Conveying power from a motor to a conveyor
- Transmission torque through pressing together friction materials
- · Generating larger torque than engagement type tooth clutches
- Paper ejection systems, paper conveyers, and positioning of paper in printers
- Drive and stop of printers

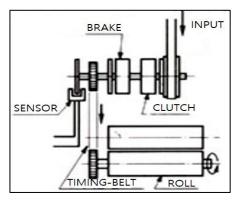
Torque range is from 0.24KGM to 38KGM

CLUTCH & BRAKE BASIC USAGE

1. Coupling / Releasing

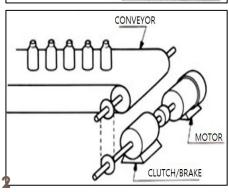
- The clutch is installed between driving part and driven part, it couples or releases the driven part without any halt to the driving part.

2. Braking / Holding


- The brake is for halting the below cases:
- The load inertia
- Machine in emergency or during operation

3. Shifting speeds

- When you want to shift the speeds, the clutch can help the shift without halting the driving part.


4. Rotating / Rewinding

- Combination of clutches can shift the rotation of the load side. At this moment, the driving part rolls to forward direction, while the load side can be shifted to forward or backward.

MOTOR CLUTCH BRAKE

5. High Speed Operation

- Hyper speed cycle generates the limitation of repetitive ON&OFF function at motor. Application of Clutch & Brake enables the motor to halt. This application can be temporary, instant, and precious.

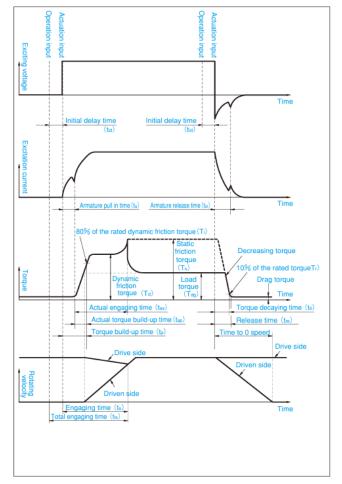
6. Positioning / Indexing

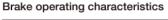
- The clutch / brake allows automatic and high precision positioning which is required for pre-set positioning and predetermined feeding operations.

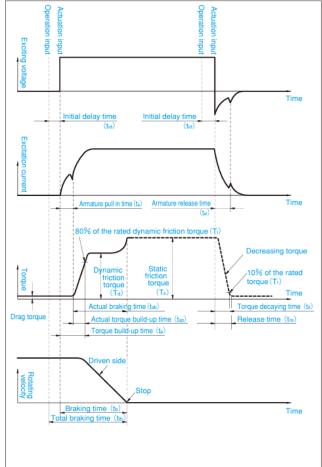
7. Inching

- The clutch / brake enables jogging when starting machines or positioning.

8. Soft starting / Stopping operation

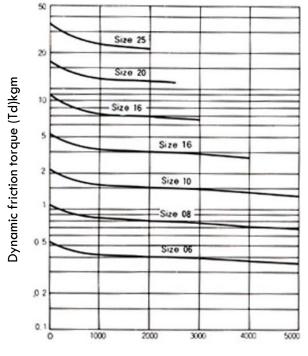

- Soft starting and stopping operations are insured with the torque adjusted to mitigate impact on loads. In this case, slip time has to be shortened to prevent overheating.


CHARACTERISTICS


1. Characteristics on Torque by Current

- The following figure shows the transient phenomena of torque and current when the clutch and brake is connected (braking) and released. It is generally called operating characteristics. When applying a voltage through the clutch and brake, the current increases according to the time constant that is determined by the coil. When the current reaches a certain value, the armature is suctioned and the friction torque is generated. The frictional torque increases as the current increases, and reaches the rated value. As well as when releasing the clutch and brake, the armature starts separation by the releasing action of the plate spring as the current decreases, and torque fades away.

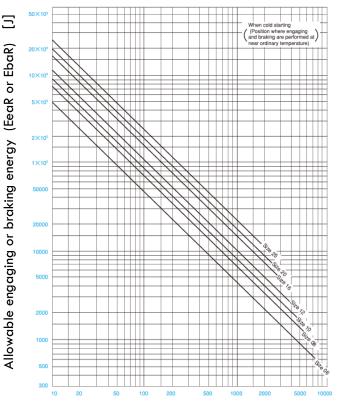
Clutch operating characteristics



- Ta: Armature pull in time: Time from when the current is applied till when the armature is pulled in and torque is generated.
- T_a: Actual torque build-up time: Time from when torque is generated till when it becomes 80% of the rated torque.
- becomes 80% of the rated torque.
 Torque build-up time: Time from when the current is applied till when the torque becomes 80% of the rated torque.
- T_e: Torque decaying time: Time from when the current is shut off till when the torque decreases to 10% of the rated torque.
- T_e: Initial delay time: Time from when the operation input is on by the clutch and brake till when the actuating input or releasing input is on for the clutch or brake body.
- T_{ae}: Actual engaging time: Time from when torque is generated by clutch till when connection is completed.
- T_{ab}: Actual braking time: Time from when torque is generated by brake till when braking is completed.

2. Dynamic friction torque characteristics

- The relationship between relative sliding velocity and dynamic friction torque is indicated in the below diagram. As indicated in the diagram, the difference between the static friction torque and the dynamic friction torque is small, which indicates that the effect in actual use becomes small.



4. Total amount of energy before air gap readjustment(Et,kgm)

3. Allowable engaging or braking energy

When accelerating or decelerating a load by clutch and brake, heat is generated by sliding friction. The amount of heat changes according to the use condition. A clutch and brake works best if the heat can be dissipated. However, if the core temperature exceeds the operational temperature limit, this may cause an operation trouble or damage. As stated above, the limit of frictional load by heat is called allowable work. The tolerance is specified for each size. Heat dissipation depends on the mounting condition, rpm's and environment. When accelerating or decelerating a large load, heat generation of the friction surface is greatly increased due to the intensive slippage. The friction material or armature could be damaged by single connection. Despite its operation frequency, if the work volume is large, apply the value much below the indicated value. For the standard size, apply below the limit line of the following diagram.

1	SIZE	05	06	08	10	12	18	20
_	Et	9X10⁵	35X10⁵	60X105	130X105	250X10⁵	470X105	10X10 ⁷

SELECTION

1. Points for selection

Due to the high controllability, clutches and brakes are used not only for on-off control but also complex operation. If the size is determined simply by its torque, an unexpected trouble may occur. When selecting the size, a careful examination from several points of view such as load characteristic or layout of the mechanism where the clutch and brake is assembled is required. This section describes the situational selection methods, calculation examples and required information.

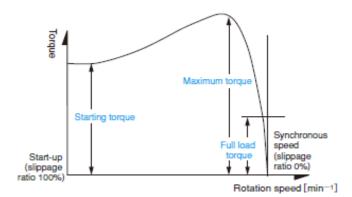
Motor and clutch & brake

1) Relationship between motor output and torque Motor HP is indicated by output, but it is indicated by torque in clutches and brakes. The following relationship is formed between the torque and motor output.

 $T_{M} = \frac{9550 \cdot P}{n_{r}} \eta [N \cdot m] \cdots 0$

P: Motor HP [kW]

nr: RPM of the clutch and brake shaft $\ ^{[}$ min^{-1}] $\eta;$ Transmission efficiency from the motor to clutch and brake

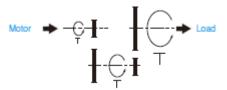

2) Difference of characteristic

Motor and clutch & brake have different torque characteristics.

Therefore, if a motor is used as a drive source and the startand-stop control of load is performed by a clutch and brake, the selection must be done in consideration of respective characteristics.

A) Motor characteristics

A motor can generate over 200% of the full-load torque at start-up. After passing through the maximum torque while accelerating, it drives the load near the full-load torque until stable operation can be obtained. When the load increases while running the motor RPM will be reduced, the motor momentum will continue to drive the load and the motor will generate additional torque. The following diagram indicates the relationship between motor torque and rotating velocity characteristic.


B) Clutch and brake characteristics

As described in the section of torque characteristics, the upper limit of coupling and braking torque is determined, and if more of the load torque is applied, it slips on the friction surface. An appropriate selection can be performed by confirming the difference of characteristic in advance. For a wide range of application, a clutch and brake with a torque value of 200~250% of the full load torque of the motor is recommended.

Relationship between torque and RPM

1) Difference of characteristic

The shaft in the machine with a high RPM can be rotated by a small force, but the decelerated low-speed shaft needs a large force to rotate. That is, torque is inverse proportion to RPM. This is very important in selecting a clutch and brake. The size or operating life changes depending on the RPM of the shaft.

2) Combination with a speed changer

Like a non-stage speed changer, when a clutch and brake is used in the mechanism that can change the RPM, the torque requirement during low speed and the responsiveness and operating life requirement during high speed must be considered in advance.

• Understanding of load characteristics

The coupling time or wear life of clutch and brake varies depending on the coupling and braking load characteristics. Therefore, to understand the load characteristics is important to maintain a consistent operation. However, the load characteristics vary in definition and a complete understanding is difficult. As it is now, the size is often determined from an experimental point of view.

1) Importance of safety factor

When the size of clutch and brake is determined, the required torque is evaluated by multiplying the factor empirically. If the driving part is already set, use the factor K empirically depending on the motor to be used. When the factor is too small, it could cause trouble such as slippage when worsening of the condition.

Conversely, if the factor is too big, the motor load increases. An excessive load may lead to motor problems.

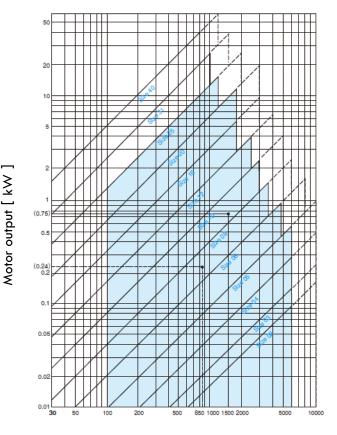
	Motor/ Turbine	Gasoline engine	Diesel engine (1~2 cylinder gasoline engine)
K	2~2.5	2.5~2.8	2.8~3.4

2) Load torque and moment of inertia

In load torque, there are resistance forces in machine and resistance forces added after coupling (such as cutting resistance). Since load torque is difficult to evaluate the size selection is sometimes calculated incorrectly, this may cause torque insufficiency in the case of clutch. The selection must be done with due caution. Moment of inertia is also called flywheel effect, which indicates the amount of power required to stop or start a rotating object. Overload of clutch and brake can be prevented by reducing the load on the clutch as much as possible. In the design phase apply a measurably larger load for brake. In addition this will minimize the inertia moment and improve responsiveness and operating life. Be sure include the inertia of clutch and brake in your inertia calculations.

2. Simplified selection graph

This selection graph is applied to a relatively light load and low frequency and when a motor is used as a drive source. The size of clutch and brake can be determined by a simplified way if the motor to be used is set appropriately to the load condition, and when there is no complicated mechanism or large inertial system to help the drive between the motor and clutch and brake. The safety factor K is 2.5 in this graph.


If other factors are required, use the value evaluated by multiplying the motor output by K/2.5 as kW of the vertical axis.

[Selection Example]

- When the motor output is 0.75 kW and the clutch and brake rotating velocity is 1500min⁻¹, select the size 10 where the ntersecting point is.
- When the motor output is 0.4kW, the clutch and brake rotating velocity is 850min⁻¹, and the safety factor is 1.5,

0.4 [kW]
$$\times \frac{1.5}{2.5} = 0.24$$
 [kW]

evaluate the value as below. The point at intersection of 0.24kw of the vertical axis and 850min-1 is in the range of the size 08.

Rotation speed[min⁻¹]

* Perform the selection within the 'BLUE' range. If the intersecting point is in the dashed line, the amount of work, heat dissipation or wear could become below the specified level.

For the heavy-line frame of below 100min-1, confirm the required torque by the formula.

* For the size 31 and 40, contact us for further information.

3. Study of torque

• Full load torque of motor (T_M)

The full load torque converted to the clutch and brake mounting shaft is;

 $T_{M} = \frac{9550 \cdot P}{Dr} \eta [N \cdot m] \cdots (1)$

P: Motor output [kW]

nr: Rotating velocity of the clutch and brake shaft [min⁻¹] η : Transmission efficiency from the motor to clutch and brake

Load torque (T_l)

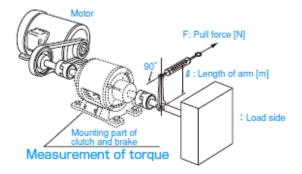
Load torque is difficult to evaluate by a formula. Therefore, the value is estimated empirically or evaluated by measuring directly.

1) Determine from the motor capacity

Assume that the motor is correctly selected for the load condition. Use the evaluated value TM of 1 as its load torque.

T₁ = T_M [N·m](2)

2) In a case of direct measurement


A correct T_{ℓ} can be determined by actual measurement of load.

For the measurement, use a torque wrench or rotate the shaft

to mount the clutch and brake, and evaluate the product of $\ensuremath{\mathsf{F}}$

(force when the load starts to rotate) and \mathcal{Q} (length of the arm).

 $\mathsf{T}_{\ell} = \ell \cdot \mathsf{F} \ [\mathsf{N} \cdot \mathsf{m}] \cdots 3$

3) Load torque sign

In the formula, the load torque is indicated by a plus-minus (+/-) sign. In a case of clutch, the load torque works on the direction of counteracting the rotation so that it is subtracted from the clutch torque T_d . In a case of brake, the load torque works on the direction of enhancing the braking so that it is added to the brake torque T_d . (It is relatively rare, but it may work the other way. In such a case, change the sign to calculate.) In the

formula, it is indicated as $\pm T_{\ell}$.

• Acceleration/deceleration torque (Ta)

1) The required torque to accelerate the load is;

$$\Gamma_{a} = \frac{J \cdot n_{r}}{9.55 t_{ae}} [N \cdot m] \quad (4)$$

t_{ae}: Actual coupling time of clutch (Acceleration time) [s] J: Total amount of inertia moment engaged by clutch [kg·m²]

2) The required torque to accelerate the load is;

$$T_{a} = \frac{J \cdot n_{r}}{9.55 t_{ab}} [N \cdot m] \quad (5)$$

t_{ab}: Actual braking time of clutch (Acceleration time) [s] J: Total amount of inertia moment engaged by brake [kg·m²]

• Required torque (T)

The required torque to drive (brake) the load by condition is as follows.

1) When engaged and when J and T_s are applied together

```
T = (T_a \pm T_I) K [N \cdot m] \cdots 6
```

K is a factor by load condition. Refer to the table below and select the value empirically. In a case of clutch, the load torque works on the direction of counteracting the drive so that T_{ℓ} is plus (+). In a case of clutch, the load torque works on the direction of enhancing the braking so that T_{ℓ} is minus (-).

2) When engaged and when J and T_{I} are applied together

	T=T/	۰K	[N•m]	·····⑦	
--	------	----	-------	--------	--

3) When J is mostly applied

T=T-·K	[N+m]	 	Ň
I = Ia · K	[[N•m])

4) In a case of stational engagement

If the clutch is coupled during stationary state and the load is accelerated by a motor, the required torque to prevent a slip of lutch during acceleration is;

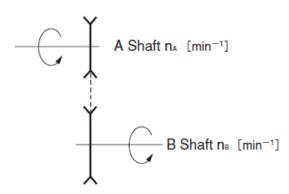
$$T = \left\{ \begin{array}{c} J_{\ell} \\ J_{d} + J_{\ell} \end{array} (T_{M} - T_{\ell}) + T_{\ell} \right\} K \ [N \cdot m] \qquad \cdots \qquad \textcircled{9}$$

 J_d : Total amount of J on the driving side from the clutch $[kg \cdot m^2]$

 $J_{_{\mathit{I}}}\colon Total$ amount of J on the loading side from the clutch $[kg \, \cdot \, m^2]$

Safety factor by load condition: K

	Use condition Factor K				
	Low-frequency use of a small inertial body	1.5			
Light	High-frequency use of a relatively small inertial body	0.00			
load	General use of a standard Inertial body	2~2.2			
	High-frequency use	2.2~2.4			
Standard	Low-frequency use of a small inertial body	2~2.4			
load	General use of a standard inertial body	2.4~2.6			
	Drive a large inertial body	2.7~3.2			
Heavy load	Operation that involved impact (Large load fluctuations)	3.5~4.5			


5) Conversion of torque to the other shaft

To convert the torque of B shaft to the A shaft

$$T_{A}=T_{B}\cdot\frac{n_{B}}{n_{A}} [N\cdot m] \cdots 0$$

T_A: Torque of A shaft, TB: torque of B shaft

 n_A : Rotation speed of A shaft, n_B : Rotation speed of B shaft

3. Study of energy

• Engaging or braking energy(E_e,E_b)

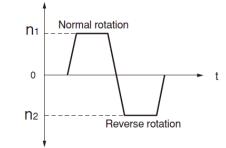
The work volume of single coupling or braking by clutch and brake is;

1) During acceleration, the engaging energy \mathbf{E}_{e} is;

$$E_e = \frac{J \cdot nr^2}{182} \cdot \frac{T_d}{T_d - T_\ell} [J]$$

2) During deceleration, the braking enery $\mathbf{E}_{\mathbf{b}}$ is;

$$E_{b} = \frac{J \cdot nr^{2}}{182} \cdot \frac{T_{d}}{T_{d} + T_{I}} [J] \cdots]$$


3) Normal/Reverse rotation

The clutch engaging energy when the rotational direction is switched by clutch is;

$$E_{e} = \frac{J}{182} \left\{ (n_{1}^{2} + 2 \cdot n_{1} \cdot n_{2}) \frac{T_{d}}{T_{d} + T_{1}} + n_{2}^{2} \frac{T_{d}}{T_{d} - T_{1}} \right\} [J] \dots]$$

n₁: Normal rotation velocity [min⁻¹]

n₂: Reverse rotation velocity[min⁻¹]

4) Energy during slip

$$E_{e} = \frac{2\pi}{60} \cdot n \cdot t \cdot T_{d} [J]$$

$$E_{b} = \frac{2\pi}{60} \cdot n \cdot t \cdot T_{d} [J]$$
(1)

t : Slipping time [s]

n: Rotating velocity to slip min⁻¹]

 T_d : Dynamic torque at n [min⁻¹][N·m]

When clutch and brake is used while slipping, an undesirable condition such as heat generation may occur.

5) Allowable energy

The allowable work E_{eal} and E_{bal} are the values under and ideal condition that the values of E_{e} and E_{b} must be sufficiently smaller than them.

Ee≪Eea≰	
Eb≪Eba∦	

* For the values of E_{eal} and E_{bal} , refer to the page of heat dissipation characteristics.

Energy rate

A clutch and brake repeats an on-off operation with a high frequency that examination of capability of heat dissipation is important.

1) Engaging energy rate (P_e)

 $P_{e} = \frac{E_{e} \cdot S}{60} \ll P_{eat} [W] \cdots (B)$

2) Braking energy rate (P_b)

 $P_{b} = \frac{E_{b} \cdot S}{60} \ll P_{bal} [W] \cdots$

S: Operation frequency [operations/min]

The allowable energy rate P_{eal} and P_{bal} are the values under an ideal condition. Therefore, determine Ee and Eb and S in order that they become sufficiently smaller than them.

* For the values of E_{eal} and E_{bal} , refer to the page of heat dissipation characteristics.

• Engaging/braking frequency (S_a)

The allowable operation frequency determined by heat dissipation Sa is;

This allowable frequency is determined only by heat dissipation. For actual use, consider the operating time also.

4. Study of operating time

Total engaging and total braking time (t_{te}, t_{tb})

The engaging and braking time of load by clutch and brake is the sum of the clutch and brake operating time itself and the accelerating and decelerating time of load.

1) Total engaging time

t _{id} : Initial delay time
t _a : Armature pull in time [s]
t _{ae} : Clutch actual engaging time (Acceleration time)[s]

2) Total braking time

 $\begin{array}{l} t_{id} : \mbox{ Initial delay time } \\ t_{a} : \mbox{ Armature pull in time [s] } \\ t_{ab} : \mbox{ Brake actual braking time [s] } \\ t_{ae} \mbox{ and } t_{ab} \mbox{ are evaluated by the formulas below by the condition. } \end{array}$

3) During acceleration/deceleration

Actual engaging time is;

Actual braking time is;

$$t_{ab} = \frac{J \cdot nr}{9.55 (T_d + T_t)} [s] \cdots (2)$$

4) During normal rotation

The actual engaging time (acceleration time) when switched the normal rotation into reverse rotation is;

$$t_{ae} = \frac{J}{9.55} \left(\frac{n_1}{T_d - T_t} + \frac{n_2}{T_d + T_t} \right) [s]$$

n₁: Normal rotation velocity [min - 1]

n₂: Reverse rotation velocity [min - 1]

• The coupling/braking time when the coupling/ braking is completed in the process of torque rise

In this case, the coupling/braking time is the sum of the armature suction time t_a and t_{ae}' or ta and t_{ab}' . 1) Total coupling time

$t_{te} = t_{id} + t_a + t_{ae'} [s] \cdots \qquad \cdots$	·····
$t_{ae}' = \sqrt{\frac{J \cdot n_r}{4.77} \cdot \frac{t_{ap}}{0.8 \cdot T_d}}$	[s]@

2) Total braking time

$t_{tb}{=}t_{id}{+}t_a{+}t_{ab}'~[S]$	
$t_{ab}' = \sqrt{\frac{J \cdot nr}{4.77} \cdot \frac{1}{0}}$	tap .8•Td [S]

They are applied in the case of $T\ell = 0$. Generally, the above formulas are used when the load torque ($T\ell$) is small in full measure. Besides, if the calculated value becomes $t_{ae}' > t_{ap}$, $t_{ab}' > t_{ap}$, apply the formula $@ \sim @$.

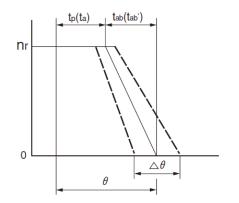
5. Study of maximum operation number

The available amount of energy of clutch and brake before air gap adjustment is determined. If more volume is required, the space adjustment is necessary. The operable number before space adjustment is;

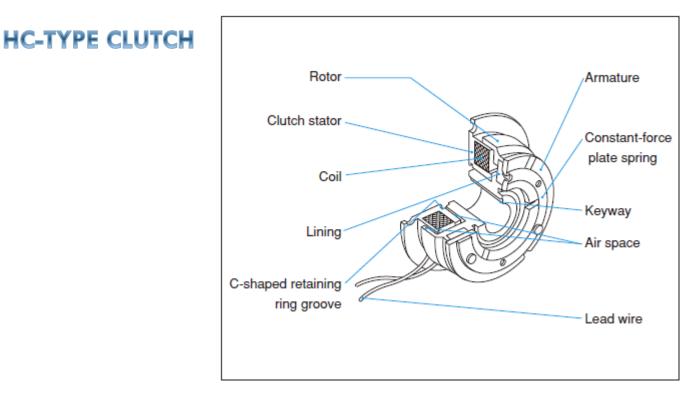
1) In a case of clutch

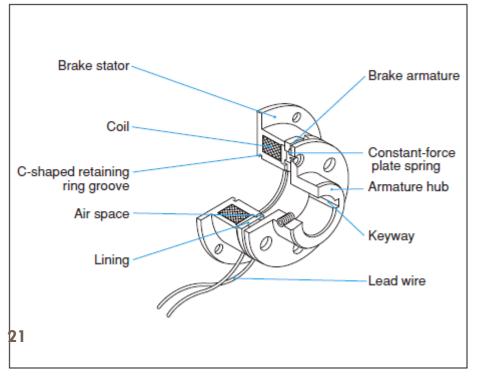
 $E_{\tau}{:}$ Total amount of energy before space readjustment [J] 2) In a case of brake

6. Study of stopping accuracy

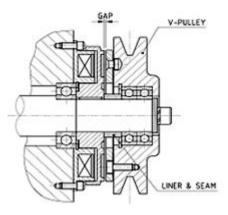

To evaluate the stopping accuracy by a formula is difficult since the friction energy or control system variation is involved.

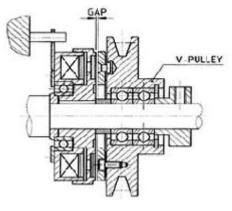
Generally, it is evaluated empirically by the formula below to use as a measure.


• Stopping angle (0)		
$\theta = 6n_r (t_{id} + t_p + \frac{1}{2} t_{ab}) ['] \dots 33$		
OR $\theta = 6n_r (t_{id} + t_a + \frac{2}{3} t_{ab}')$ [']		
• Stopping accuracy ($ riangle heta$)		
$\triangle \theta = \pm 0.15 \theta$ [']		


If there is a factor to disturb the braking effect such as load fluctuation, change the constant of the formula 3 to 0.2~ 0.25.

The system delay or variation caused by a backlash of chain or gear is not included in the stopping angle and accuracy.

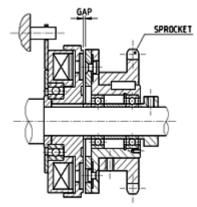

BASIC STRUCTURE



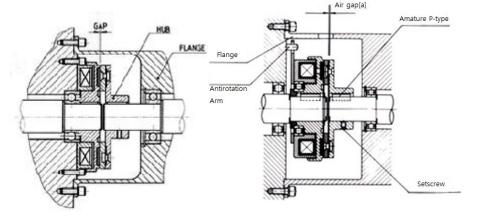
HBP-TYPE BRAKE

EXAMPLE ON INSTALLATION

HC-Series: The clutch is mounted on wall, with a V-pulley fitted with an armature.

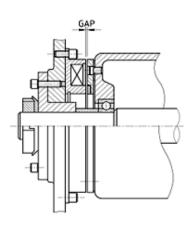


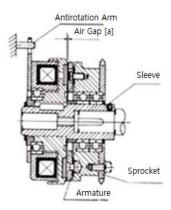
HCS-Series: The clutch is mounted on a through-shaft, with a V-pulley fitted with an armature.


SPROCKET

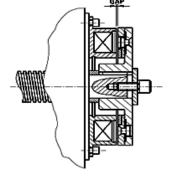
GAP

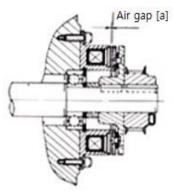
HCH-Series: The clutch is mounted on wall, with a sprocket fitted with an armature.

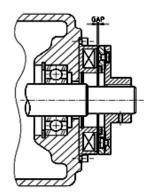

HCSH-Series: The clutch is mounted on a through-shaft, with a sprocket fitted with an armature.

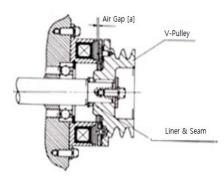

HCP-Series: The clutch is mounted on the split-shaft, and aligned with the flange-set up.

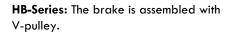
HCSP-Series: The clutch is mounted on the split-shaft, and aligned with the flange-set up.


EXAMPLE ON INSTALLATION


HB-Series: The brake is mounted with slight gap between roll and wall.

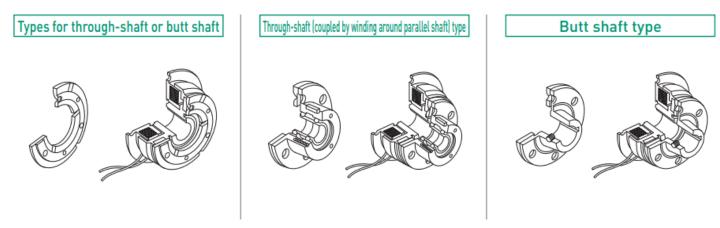

HCS-Series: The clutch is assembled with sprocket.


HBR-Series: The brake is mounted on upper thread and of vertical shaft.



HBR-Series: The brake is mounted on wall with timing pulley.

HBP-Series: The brake is mounted in shaft-end.



HC TYPE CLUTCH- Flange-mounted

Stator and rotor are combined and directly mounted on stationary parts, such as frames, and fixed in place. These are short in the axial direction and can make effective use of space near windows. Select the armature according to the coupling type used (through-shaft, butt shaft, etc.).

	Stator	Flange-mounted type
Configuration	Armature	HC type: for through-shaft or butt shaft
Contigoration		HCH type: through-shaft(coupled by winding around parallel shaft) type
		HCP type: butt shaft
Torque	0.24~40kg. m	
Size		8 size

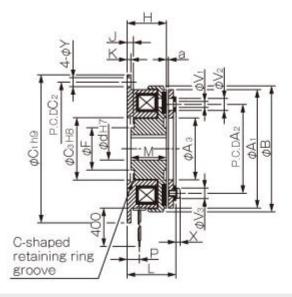
HC-TYPE

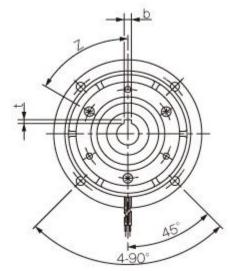
HCH-TYPE

HCP-TYPE

HC TYPE CLUTCH- Flange-mounted

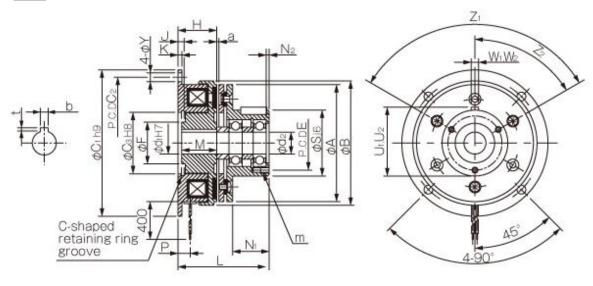
• Specifications


		Dynai	Stat	С	oil (at	20 ℃)		Hea	Lead	wire	Max. ro	Rotatin moment of		Total work readjustment	Armature	Torque	Torque o	
Model	Size	Dynamic friction torque Td [N·m]	Static Friction torque Ts N • m]	Voltage V]	Capacity W]	Current A]	Resistance Ω]	Heat resistance class	UL style	Size	Max. rotation speed (min ⁻¹)	Rotor kg•m²]	Armature kg•m²]	ork performed until ent of the air gap ET J]	pull-in time time ta s	build-up time tp s]	Torque decaying time td s]	Mass kg]
HC	06	5	5.5	24 DC	11	0.46	52	В	UL3398	AWG22	8000	7.35×10 ⁻⁵	4.23×10 ⁻⁵	36×10 ⁶	0.020	0.041	0.020	0.46
HCH	06	5	5.5	24 DC	11	0.46	52	В	UL3398	AWG22	8000	7.35×10 ⁻⁵	1.05×10-4	36×10 ⁶	0.020	0.041	0.020	0.66
HCP	06	5	5.5	24 DC	11	0.46	52	В	UL3398	AWG22	8000	7.35×10 ⁻⁵	6.03×10 ⁻⁵	36×10 ⁶	0.020	0.041	0.020	0.5
HC	08	10	11	24 DC	15	0.63	38	В	UL3398	AWG18	6000	2.24×10 ⁻⁴	1.18×10-4	60×10 ⁶	0.023	0.051	0.030	0.83
НСН	08	10	11	24 DC	15	0.63	38	В	UL3398	AWG18	6000	2.24×10 ⁻⁴	3.00×10-4	60×10 ⁶	0.023	0.051	0.030	1.19
HCP	08	10	11	24 DC	15	0.63	38	В	UL3398	AWG18	6000	2.24×10 ⁻⁴	1.71×10-4	60×10 ⁶	0.023	0.051	0.030	0.91
HC	10	20	22	24 DC	20	0.83	29	В	UL3398	AWG18	5000	6.78×10 ⁻⁴	4.78×10-4	130×10 ⁶	0.025	0.063	0.050	1.5
НСН	10	20	22	24 DC	20	0.83	29	В	UL3398	AWG18	5000	6.78×10 ⁻⁴	9.45×10-4	130×10 ⁶	0.025	0.063	0.050	2.11
HCP	10	20	22	24 DC	20	0.83	29	В	UL3398	AWG18	5000	6.78×10 ⁻⁴	6.63×10-4	130×10 ⁶	0.025	0.063	0.050	1.66
HC	12	40	45	24 DC	25	1.04	23	В	UL3398	AWG18	4000	2.14×10 ⁻³	1.31×10 ⁻³	250×10 ⁶	0.040	0.115	0.065	2.76
НСН	12	40	45	24 DC	25	1.04	23	В	UL3398	AWG18	4000	2.14×10 ⁻³	2.75×10 ⁻³	250×10 ⁶	0.040	0.115	0.065	3.8
НСР	12	40	45	24 DC	25	1.04	23	В	UL3398	AWG18	4000	2.14×10 ⁻³	1.81×10 ⁻³	250×10 ⁶	0.040	0.115	0.065	3.05
HC	16	80	90	24 DC	35	1.46	16	В	UL3398	AWG18	3000	6.30×10 ⁻³	4.80×10 ⁻³	470×10 ⁶	0.050	0.160	0.085	5.1
НСН	16	80	90	24 DC	35	1.46	16	В	UL3398	AWG18	3000	6.30×10 ⁻³	9.05×10 ⁻³	470×10 ⁶	0.050	0.160	0.085	6.9
НСР	16	80	90	24 DC	35	1.46	16	В	UL3398	AWG18	3000	6.30×10 ⁻³	6.35×10 ⁻³	470×10 ⁶	0.050	0.160	0.085	5.4
HC	20	160	175	24 DC	45	1.88	13	В	UL3398	AWG16	2500	1.93×10 ⁻²	1.37×10 ⁻²	10×10 ⁸	0.090	0.250	0.130	9.3
НСН	20	160	175	24 DC	45	1.88	13	В	UL3398	AWG16	2500	1.93×10 ⁻²	2.65×10 ⁻²	10×10 ⁸	0.090	0.250	0.130	13
НСР	20	160	175	24 DC	45	1.88	13	В	UL3398	AWG16	2500	1.93×10 ⁻²	1.90×10 ⁻²	10×10 ⁸	0.090	0.250	0.130	10.5
HC	25	320	350	24 DC	60	2.5	9.6	В	UL3398	AWG16	2000	4.48×10 ⁻²	3.58×10 ⁻²	$20 imes 10^8$	0.115	0.335	0.210	17
НСН	25	320	350	24 DC	60	2.5	9.6	В	UL3398	AWG16	2000	4.48×10 ⁻²	7.45×10 ⁻²	20×10 ⁸	0.115	0.335	0.210	23.6
HCP	25	320	350	24 DC	60	2.5	9.6	В	UL3398	AWG16	2000	4.48×10 ⁻²	4.83×10 ⁻²	20×10 ⁸	0.115	0.335	0.210	18.7


²⁶ HS SERIES

HC SERIES: Flange-mounted

: for direct mounting


Unit [mm]

Size						Radi	al direc	ion din	nensions							,	Axial di	rection	n dimens	ions	
ze	A1	A2	A3	В	C1	C2	C3	F	V1	V2	V3	Y	Z	Н	J	к	L	Μ	Р	х	a
06	63	46	34.5	67.5	80	72	35	23	3-3.1	3-6.3	3-5.5	5	$6-60^{\circ}$	24	3.5	2.1	28	22	7.3	2.5	$0.2^{\pm 0.05}$
08	80	60	41.7	85	100	90	42	28.5	3-4.1	3-8	3-7	6	$6-60^{\circ}$	26.5	4.3	2.6	31	24	8.3	2.85	$0.2^{\pm 0.05}$
10	100	76	51.5	106	125	112	52	40	3-5.1	3-11	3-9	7	$6-60^{\circ}$	30	5	3.1	36.1	27	9	3.3	$0.2^{\pm 0.05}$
12	125	95	61.5	133	150	137	62	45	3-6.1	3-12	3-11	7	$6-60^{\circ}$	33.5	5.5	3.6	40.5	30	9.3	3.3	0.3 ^{+0.05} -0.1
16	160	120	79.5	169	190	175	80	62	3-8.2	3-15	3-14	9.5	$6-60^{\circ}$	37.5	6	4.1	46.5	34	11.7	3.5	0.3 ^{+0.05} -0.1
20	200	158	99.5	212.3	230	215	100	77	3-10.2	3-18	3-16.2	9.5	6-60°	44	7	5.1	55.4	40	13.4	4.9	0.5° _{-0.2}
25	250	210	124.5	264	290	270	125	100	4-12.2	4-22	4-20	11.5	$8-45^{\circ}$	51	8	6.1	63.9	47	16	5.5	0.5° _{-0.2}

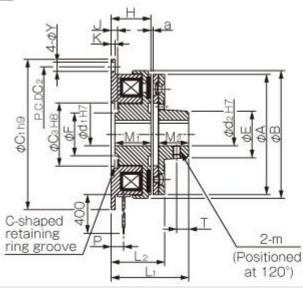
			Shaft bore dim	ensions	
Size	dH7	Models compliant	with JIS standards	Models complie	ant with the old JIS standards
	dH7	bP9	t	bE9	t
06	12	4 ^{-0.012} -0.042	1.5 ^{+0.5} 0	4 ^{+0.050} +0.020	1.5 ^{+0.5} 0
08	15	5 ^{-0.012} -0.042	2 ^{+0.5} 0	5 ^{+0.050} +0.020	2 ^{+0.5} 0
00	15	5 ^{-0.012} -0.042	2 ^{+0.5} 0	5 ^{+0.050} +0.020	2 ^{+0.5} 0
08	20	6 ^{-0.012} -0.042	2.5 ^{+0.5} 0	5 ^{+0.050} +0.020	2 ^{+0.5} 0
10	20	6 ^{-0.012} -0.042	2.5 ^{+0.5} 0	5 ^{+0.050} +0.020	2 ^{+0.5} 0
10	25	8 -0.015 -0.051	3 ^{+0.5} 0	7 ^{+0.061} +0.025	3 ^{+0.5} 0
10	25	8 -0.015 -0.051	3 ^{+0.5} 0	7 ^{+0.061} +0.025	3 ^{+0.5} 0
12	30	8 -0.015 0.051	3 ^{+0.5} 0	7 ^{+0.061} +0.025	3 ^{+0.5} 0
17	30	8 -0.015 -0.051	3 ^{+0.5} 0	7 ^{+0.061} +0.025	3 ^{+0.5} 0
16	40	12 ^{-0.018} -0.061	3 ^{+0.5} 0	10 ^{+0.061} +0.025	3.5 ^{+0.5} ₀
20	40	12 ^{-0.018} -0.061	3 ^{+0.5} 0	10 ^{+0.061} +0.025	3.5 ^{+0.5} ₀
20	50	14 ^{-0.018} -0.061	3.5 ^{+0.5} ₀	12 ^{+0.075} +0.032	3.5 ^{+0.5} ₀
25	50	14 ^{-0.018} -0.061	3.5 ^{+0.5} 0	12 ^{+0.075} +0.032	3.5 ^{+0.5} ₀
25	60	18 ^{-0.018} -0.061	4 ^{+0.5} 0	$15^{+0.075}_{+0.032}$	5 ^{+0.5}

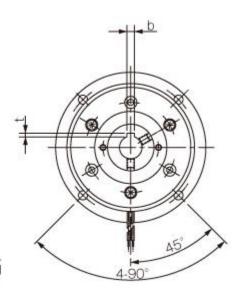
HC TYPE CLUTCH- Flange-mounted

HCH- : for through-shafts

Unit [mm]

C:				Ro	adial	direct	ion di	mensi	ons										Axic	al direc	tion o	dimen	sions		
Size	А	В	C1	C2	C3	Е	F	Y	S	Z1	Z2	н	J	К	L	м	N1	N2	Ρ	U1	W1	U2	W2	a	m
06	63	67.5	80	72	35	33	23	5	38	$3-120^{\circ}$	60°	24	3.5	2	51.5	22	20	2	7.3	39.5	4	39.5	4	0.2 ± 0.05	3-M4×0.7, length: 4
08	80	85	100	90	42	37	28.5	6	45	$3-120^{\circ}$	60°	26.5	4.3	2.5	60	24	25	2	8.3	47	5	47	5	0.2 ± 0.05	3-M4×0.7, length: 6
10	100	106	125	112	52	47	40	7	55	4-90°	45°	30	5	3	71	27	30	3	9	57	5	57.5	6	0.2±0.05	4-M4×0.7, length: 8
12	125	133	150	137	62	52	45	7	64	$4-90^{\circ}$	45°	33.5	5.5	3.5	86.5	30	40	2	9.3	67	7	67	8	0.3+0.05	4-M4×0.7, length: 8
16	160	169	190	175	80	62	62	9.5	75	6-60°	30°	37.5	6	4	103.5	34	50	3	11.7	78	7	78	8	0.3+0.05	6-M5×0.8, length: 8
20	200	212.3	230	215	100	74.5	77	9.5	90	4-90°	45°	44	7	5	124.5	40	60	5	13.4	93.5	10	93	10	0.5° _{-0.2}	4-M6×1, length: 12
25	250	264	290	270	125	101.5	100	11.5	115	8-45°	22.5°	51	8	6	145	47	70	6	16	118.5	12	118	12	0.5 ⁰ -0.2	8-M6×1, length: 12

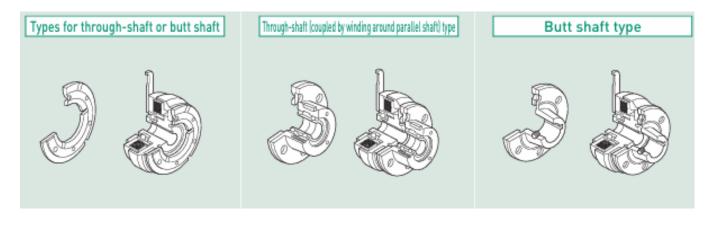

			Shaft bore	dimensions		
Size	d1H7	d2	Models compliant	with JIS standards	Models compliant with	the old JIS standards
			bP9	t	bE9	t
06	12	12	4-0.012	1.5 ^{+0.5} 0	4 ^{+0.050} +0.020	1.5 ^{+0.5} 0
08	15	15	5 ^{-0.012} -0.042	2 ^{+0.5} 0	5 ^{+0.050} +0.020	2 ^{+0.5} 0
10	20	20	6 ^{-0.012} -0.042	2.5 ^{+0.5} ₀	5 ^{+0.050} +0.020	2 ^{+0.5} 0
12	25	25	8 ^{-0.015} -0.051	3 ^{+0.5} 0	7 ^{+0.061} +0.025	3 ^{+0.5} 0
16	30	30	8 ^{-0.015} -0.051	3 ^{+0.5} 0	7 ^{+0.061} +0.025	3 ^{+0.5} 0
20	40	40	12 ^{-0.018} -0.061	3 ^{+0.5} 0	10 ^{+0.061} +0.025	3.5 ^{+0.5} ₀
25	50	50	14-0.018-0.061	3.5 ^{+0.5} ₀	12+0.075+0.032	3.5 ^{+0.5}


²⁸ HS SERIES

HC TYPE CLUTCH- Flange-mounted

HCP-

: for butt shafts


C:				Rc	ıdial dir	ection c	limensio	ns							Axial	directio	on dime	nsions	
Size	А	В	C1	C2	C3	Е	F	Y	m	н	J	к	L1	L2	M1	M2	Р	т	a
06	63	67.5	80	72	35	26	23	5	M4	24	3.5	2.5	43	31.5	22	15	7.3	6	0.2±0.05
08	80	85	100	90	42	31	28.5	6	M5	26.5	4.3	3	51	35	24	20	8.3	8	0.2 ± 0.05
10	100	106	125	112	52	41	40	7	M5	30	5	2	61	41	27	25	9	10	0.2±0.05
12	125	133	150	137	62	49	45	7	M6	33.5	5.5	3.5	70.5	46.5	30	30	9.3	12	0.3 ^{+0.05} -0.1
16	160	169	190	175	80	65	62	9.5	M8	37.5	6	4	84.5	53.5	34	38	11.7	15	0.3 ^{+0.05} -0.1
20	200	212.5	230	215	100	83	77	9.5	M8	44	7	5	100.5	64.5	40	45	13.4	18	0.5° _{-0.2}
25	250	264	290	270	125	105	100	11.5	M10	51	8	6	118	75	47	54	16	22	0.5° _{-0.2}

			Shaft bore	dimensions		
Size	d1H7	d2H7	Models compliant	with JIS standards	Models compliant with	the old JIS standards
		d2H/	bP9	t	bE9	t
04	12	12	4 ^{-0.012} -0.042	1.5 ^{+0.5} 0	4 ^{+0.050} +0.020	1.5 ^{+0.5} 0
06	15	15	5-0.012-0.042	2 ^{+0.5} 0	5 ^{+0.050} +0.020	2 ^{+0.5} 0
08	15	15	5 ^{-0.012} -0.042	2 ^{+0.5} 0	5 ^{+0.050} +0.020	2 ^{+0.5} 0
08	20	20	6 ^{-0.012} -0.042	2.5 ^{+0.5} 0	5 ^{+0.050} +0.020	2 ^{+0.5} 0
10	20	20	6 ^{-0.012} -0.042	2.5 ^{+0.5} 0	5 ^{+0.050} +0.020	2 ^{+0.5} 0
10	25	25	8 ^{-0.015} -0.051	3 ^{+0.5} 0	7 ^{+0.061} +0.025	3 ^{+0.5} 0
12	25	25	8 ^{-0.015} 0.051	3 ^{+0.5} 0	7 ^{+0.061} +0.025	3 ^{+0.5} 0
12	30	30	8 -0.015 -0.051	3 ^{+0.5} 0	7 ^{+0.061} +0.025	3 ^{+0.5} 0
16	30	30	8 -0.015 -0.051	3 ^{+0.5} 0	7 ^{+0.061} +0.025	3 ^{+0.5} 0
10	40	40	12-0.018	3 ^{+0.5} 0	$10^{+0.061}_{+0.025}$	3.5 ^{+0.5} ₀
20	40	40	12 ^{-0.018} -0.061	3 ^{+0.5} 0	$10^{+0.061}_{+0.025}$	3.5 ^{+0.5} 0
20	50	50	14 ^{-0.018} -0.061	3.5 ^{+0.5} ₀	$12^{+0.075}_{+0.032}$	3.5 ^{+0.5} ₀
25	50	50	14-0.018	3.5 ^{+0.5} 0	$12^{+0.075}_{+0.032}$	3.5 ^{+0.5} ₀
25	60	60	18 ^{-0.018} -0.061	4 ^{+0.5} 0	$15^{+0.075}_{+0.032}$	5 ^{+0.5}

HC TYPE CLUTCH- Bearing-mounted

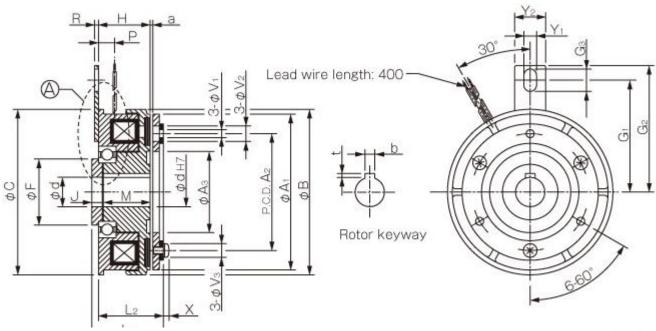
These integrate the stator and rotor, which are held to the stationary parts of the machine by a drive pin arm; the rotor is locked to the rotation shaft by a key. They are designed to be relatively easy to mount, reducing the processing work required for mounting.

	Stator	Flange-mounted type
		HCS type: for through-shaft or butt shaft
Configuration	Armature	HCSH type: through-shaft(coupled by winding around parallel shaft) type
		HCSP type: butt shaft
Torque		0.5~8kg. m
Size		5 size

HCS-TYPE

HCSH-TYPE

HCSP-TYPE

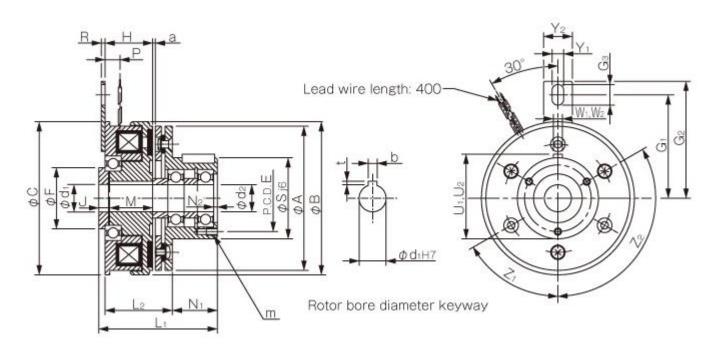

HC TYPE CLUTCH- Bearing-mounted

• Specifications

		Dynamic friction torque Td	Static friction		Coil (at 20℃)		Heat re	Leac	l wire	Max. rotation speed		rt moment of tia J	Total w until readjustme	Armature	Torque bu	Torque de	×
Model	Size	on torque Td [{\vec{N}} • m]	friction torque Ts 🖞 • m]	Voltage ∛]	Wattage 擾]	Current [Å]	Resistance 🏚]	Heat resistance class	UL style	Size	tion speed [hin ⁻¹]	Rotor {{g•m²]	Armature [{g·m²]	Total work performed until readjustment of the air gap ET 【]	Armature pull-in time ta {]	Torque build-up time tp {]	Torque decaying time td {]	Mass ({g]
HCS	06	5	5.5	DC 24	11	0.46	52	В	UL3398	AWG22	3000	7.35×10 ⁻⁵	4.23×10 ⁻⁵	$36 imes 10^{6}$	0.020	0.041	0.020	0.50
HCSH	06	5	5.5	DC 24	11	0.46	52	В	UL3398	AWG22	3000	7.35×10 ⁻⁵	1.05×10 ⁻⁴	36×10 ⁶	0.020	0.041	0.020	0.70
HCSP	06	5	5.5	DC 24	11	0.46	52	В	UL3398	AWG22	3000	7.35×10 ⁻⁵	6.03×10 ⁻⁵	$36 imes 10^{6}$	0.020	0.041	0.020	0.54
HCS	08	10	11	DC 24	15	0.63	38	В	UL3398	AWG18	3000	2.24×10 ⁻⁴	1.18×10 ⁻⁴	60×10 ⁶	0.023	0.051	0.030	0.87
HCSH	08	10	11	DC 24	15	0.63	38	В	UL3398	AWG18	3000	2.24×10 ⁻⁴	3.00×10 ⁻⁴	60×10 ⁶	0.023	0.051	0.030	1.23
HCSP	08	10	11	DC 24	15	0.63	38	В	UL3398	AWG18	3000	2.24×10 ⁻⁴	1.71×10 ⁻⁴	60×10 ⁶	0.023	0.051	0.030	0.95
HCS	10	20	22	DC 24	20	0.83	29	В	UL3398	AWG18	3000	6.78×10 ⁻⁴	4.78×10 ⁻⁴	130×10^{6}	0.025	0.063	0.050	1.57
HCSH	10	20	22	DC 24	20	0.83	29	В	UL3398	AWG18	3000	6.78×10 ⁻⁴	9.45×10 ⁻⁴	130×10 ⁶	0.025	0.063	0.050	2.18
HCSP	10	20	22	DC 24	20	0.83	29	В	UL3398	AWG18	3000	6.78×10 ⁻⁴	6.63×10 ⁻⁴	$130 imes 10^{6}$	0.025	0.063	0.050	1.73
HCS	12	40	45	DC 24	25	1.04	23	В	UL3398	AWG18	2000	2.14×10 ⁻³	1.31×10 ⁻³	250×10 ⁶	0.040	0.115	0.065	2.89
HCSH	12	40	45	DC 24	25	1.04	23	В	UL3398	AWG18	2000	2.14×10 ⁻³	2.75×10 ⁻³	$250 imes 10^{6}$	0.040	0.115	0.065	3.93
HCSP	12	40	45	DC 24	25	1.04	23	В	UL3398	AWG18	2000	2.14×10 ⁻³	1.81×10 ⁻³	250×10 ⁶	0.040	0.115	0.065	3.18
HCS	16	80	90	DC 24	35	1.46	16	В	UL3398	AWG18	2000	6.30×10 ⁻³	4.80×10 ⁻³	470×10 ⁶	0.050	0.160	0.085	5.3
HCSH	16	80	90	DC 24	35	1.46	16	В	UL3398	AWG18	2000	6.30×10 ⁻³	9.05×10 ⁻³	470×10 ⁶	0.050	0.160	0.085	7.1
HCSP	16	80	90	DC 24	35	1.46	16	В	UL3398	AWG18	2000	6.30×10 ⁻³	6.35×10 ⁻³	470×10 ⁶	0.050	0.160	0.085	5.6

HC TYPE CLUTCH- Bearing-mounted

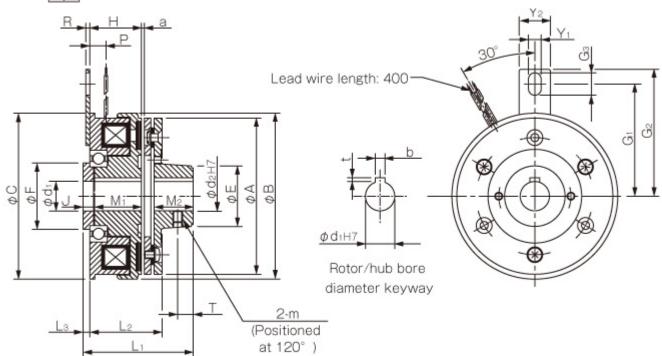
HCS- : for butt shafts


Unit [mm]

Size					Ra	dial	directi	ion di	imens	ions							A	xia	l dire	ction	dim	ension	IS
Size	A1	A2	A 3	В	С	F	G1	G2	G3	V1	V2	V3	Y1	Y2	Н	L1	L2	М	J	Ρ	R	Х	а
06	64	46	34.5	67	63	24	42.5	50	9.5	3-3.1	3-6.3	3-5	4.5	14	24	31	28	22	5	7.5	2	2.5	0.2±0.05
08	84	60	41.7	85	80	34	57.5	65	10.5	3-4.1	3-8	3-7.1	5.5	16	26.5	34.8	31.3	24	6	8	3	2.85	0.2±0.05
10	101	76	51.5	106	100	40	62.5	70	11.5	3-5.1	3-10.5	3-9	6.5	16	30	39.5	36	27	6.5	9	3	3.3	0.2±0.05
12	126	95	61.5	133	125	46	77.5	85	11.5	3-6.1	3-12	3-10.5	6.5	16	33.5	44.8	40.8	30	7.5	9	3	3.3	0.3+0.05
16	161	120	79.5	169	160	58	100	112	18.5	3-8.1	3-15	3-13.5	8.5	25	37.5	51	47	34	7.5	11.5	3	3.5	0.3 ^{+0.05} -0.1

			Shaft bore dimensions	\$	
Size	dH7	Models compliant	with JIS standards	Models compliant with	the old JIS standards
	uni	bP9	t	bE9	t
6	12	4 ^{-0.012} -0.042	1.5 ^{+0.5} 0	4 ^{+0.050} +0.020	1.5 ^{+0.5} 0
8	15	5 ^{-0.012} -0.042	2 ^{+0.5} 0	5 ^{+0.050} +0.020	2 ^{+0.5} 0
10	20	6 ^{-0.012} -0.042	2.5 ^{+0.5}	5 ^{+0.050} +0.020	2 ^{+0.5} 0
12	25	8 ^{-0.015} -0.051	3 ^{+0.5} 0	7 ^{+0.081} +0.025	3 ^{+0.5} 0
16	30	8 ^{-0.015} -0.051	3 ^{+0.5} 0	7 ^{+0.081} +0.025	3 ^{+0.5}

HC TYPE CLUTCH- Bearing-mounted

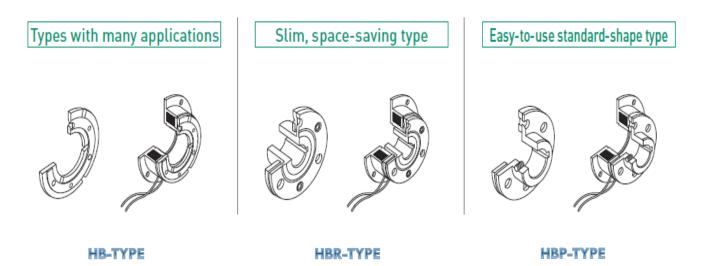

Siz		Radial direction dimensions											Axial direction dimensions															
е	А	В	С	Е	F	G1	G2	G3	s	Y1	Y2	Z1	Z2	н	L1	L2	М	J	N1	N2	Р	R	U1	W1	U2	W2	а	m
06	64	67	63	33	24	42.5	50	9.5	38	4.5	14	3-120°	60°	24	54.5	31.5	522	5	20	2	7.3	2	39.5	4	39.5	4	0.2±0.05	3-M4×0.7, lengh:4
08	81	85	80	37	34	57.5	65	10.5	5 45	5.5	16	3-120°	60°	26.5	64.5	35.8	324	6	25	2	8.3	2	47	5	47	5	0.2±0.05	3-M4×0.7, lengh:6
10	101	106	100	47	40	62.5	70	11.5	5 55	6.5	16	4-90°	45°	30	75.5	42	27	6.5	30	2	9	2	57	5	57	6	0.2±0.05	4-M4×0.7, lengh:8
12	126	133	125	52	46	77.5	85	11.5	5 64	6.5	16	4-90°	45°	33.5	90.8	46.8	30	7.5	40	2	9.3	2	67	7	67	8	0.3+0.05	4-M4×0.7, lengh:8
16	161	169	160	62	58	100	112	18.5	575	8.5	25	6-60°	30°	37.5	108.8	54.8	334	7.5	50	3	11.7	3.2	78	7	78	8	0.3+0.05	6-M5×0.8, Lengh:8
																												Links Frank

Init		
	Imm	

		Shaft bore dimensions													
Size	d1H7	d2	Models compliant with JIS standards Models compliant with the old JIS standards												
			bP9	t	bE9	t									
6	12	12	4 ^{-0.012} -0.042	1.5 ^{+0.5} 0	4 ^{+0.050} +0.020	1.5 ^{+0.5} 0									
8	15	15	5 ^{-0.012} -0.042	2 ^{+0.5} 0	5 ^{+0.050} +0.020	2 ^{+0.5} 0									
10	20	20	6 ^{-0.012} -0.042	2.5 ^{+0.5} 0	5 ^{+0.050} +0.020	2 ^{+0.5} 0									
12	25	25	8 ^{-0.015} -0.051	3 ^{+0.5} 0	7 ^{+0.081} +0.025	3 ^{+0.5} 0									
16	30	30	8 ^{-0.015} -0.051	3 ^{+0.5} 0	7 ^{+0.081} +0.025	3+0.5									

HC TYPE CLUTCH- Bearing-mounted

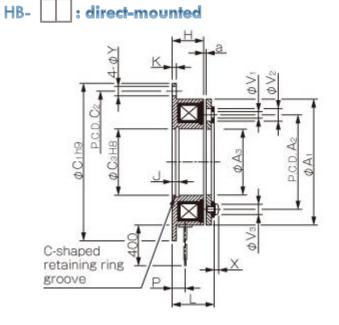
Unit [mm]

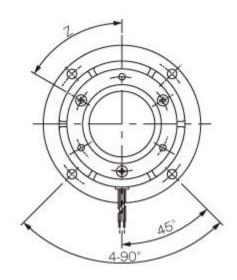

C :		Radial direction dimensions B C E F G1 G2 G3 Y1 Y2 m											Axial direction dimensions										
Size	А	В	С	Е	F	Gl	G2	G3	Y1	Y2	m	н	L1	L2	L3	M1	M2	J	Р	R	Т	a	
06	64	67	63	26	24	42.5	50	9.5	4.5	14	M4	24	46	32	3	22	15	5	7.3	2	6	0.2 ± 0.05	
08	81	85	80	31	34	57.5	65	10.5	5.5	16	M5	26.5	54.8	35.3	3.5	24	20	6	8.3	3	8	0.2 ± 0.05	
10	101	106	100	41	40	62.5	70	11.5	6.5	16	M5	30	64.5	42	3.5	27	25	6.5	9	3	10	0.2±0.05	
12	126	133	125	49	46	77.5	85	11.5	6.5	16	M6	33.5	73.8	46.8	4	30	30	7.5	9.3	3	12	0.3 ^{+0.05} -0.1	
16	161	169	160	65	58	100	112	18.5	8.5	25	M8	37.5	87.8	54.8	4	34	38	7.5	11.7	3	15	0.3+0.05	

			Shaft bore dimensions													
	Size	1117	10117	Models compliant with JIS standards Models compliant with the old JIS sta												
		d1H7	d2H7	bP9	t	bE9	t									
	6	12	12	4-0.012	1.5 ^{+0.5} 0	4 ^{+0.050} +0.020	1.5 ^{+0.5} 0									
	8	15	15	5 ^{-0.012} -0.042	2 ^{+0.5} 0	5 ^{+0.050} +0.020	2 ^{+0.5} 0									
	10	20	20	6 ^{-0.012} -0.042	2.5 ^{+0.5} 0	5 ^{+0.050} +0.020	2 ^{+0.5} 0									
	12	25	25	8 ^{-0.015} -0.051	3 ^{+0.5} 0	7 ^{+0.061} +0.025	3 ^{+0.5} 0									
33	16	30	30	8 ^{-0.015} -0.051	3 ^{+0.5} 0	7 ^{+0.061} +0.025	3 ^{+0.5}									

HB BRAKE

Brakes are used to brake and hold rotating bodies. The flange of the stator is locked securely to a strong stationary part. Select an armature that factors in the mounting space available.

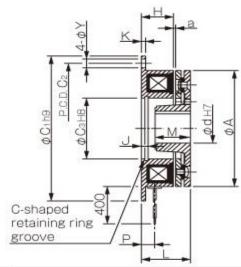

	Stator	Flange-mounted type					
Configuration		HB type: direct-mounted					
Ŭ	Armature	HBR type: slim, space-saving					
		HBP type: easy-to-use standard-shape					
Torque	0.24~40kg. m 8 size						
Size							

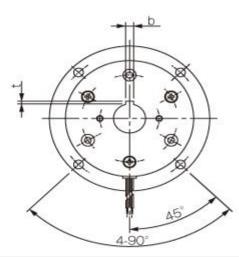


HB BRAKE

• Specifications

Model	Size	Dynamic friction torque Td № • m]	Static friction torque Ts 🏼 [\] • m]	Ŭ Voltage ∛]	oil (at Vanage	20 ℃ Current Å]) Resistance	Heat resistance class	Lead UL style	wire Size	Max. rotation speed [hin ⁻¹]	Armature Moment of inertia J [kg·m²]	Total work performed until readjustment of the air gap ET []	Armature pull-in time ta 🗐	Torque rise time tp {]	Torque extinction time td {]	Mass kg]
НВ	06	5	5.5	DC24	11	0.46	52	В	UL3398	AWG22	8000	4.23×10 ⁻⁵	36×10 ⁶	0.015	0.033	0.015	0.28
HBR	06	5	5.5	DC24	11	0.46	52	В	UL3398	AWG22	8000	6.03×10 ⁻⁵	36×10 ⁶	0.015	0.033	0.015	0.32
HBP	06	5	5.5	DC24	11	0.46	52	В	UL3398	AWG22	8000	6.03×10 ⁻⁵	36×10 ⁶	0.015	0.033	0.015	0.32
НВ	08	10	11	DC24	15	0.63	38	В	UL3398	AWG18	6000	1.18×10-4	60×10 ⁶	0.016	0.042	0.025	0.5
HBR	08	10	11	DC24	15	0.63	38	В	UL3398	AWG18	6000	1.71×10-4	60×10 ⁶	0.016	0.042	0.025	0.58
HBP	08	10	11	DC24	15	0.63	38	В	UL3398	AWG18	6000	1.71×10-4	60×10 ⁶	0.016	0.042	0.025	0.58
НВ	10	20	22	DC24	20	0.83	29	В	UL3398	AWG18	5000	4.78×10-4	130×10^{6}	0.018	0.056	0.030	0.91
HBR	10	20	22	DC24	20	0.83	29	В	UL3398	AWG18	5000	6.63×10-4	130×10^{6}	0.018	0.056	0.030	1.07
HBP	10	20	22	DC24	20	0.83	29	В	UL3398	AWG18	5000	6.63×10-4	130×10 ⁶	0.018	0.056	0.030	1.07
НВ	12	40	45	DC24	25	1.04	23	В	UL3398	AWG18	4000	1.31×10-3	250×10 ⁶	0.027	0.090	0.050	1.68
HBR	12	40	45	DC24	25	1.04	23	В	UL3398	AWG18	4000	1.81×10 ⁻³	250×10 ⁶	0.027	0.090	0.050	1.97
HBP	12	40	45	DC24	25	1.04	23	В	UL3398	AWG18	4000	1.81×10-3	250×10 ⁶	0.027	0.090	0.050	1.97
НВ	16	80	90	DC24	35	1.46	16	В	UL3398	AWG18	3000	4.80×10 ⁻³	470×10 ⁶	0.035	0.127	0.055	3.15
HBR	16	80	90	DC24	35	1.46	16	В	UL3398	AWG18	3000	6.35×10 ⁻³	470×10 ⁶	0.035	0.127	0.055	3.45
HBP	16	80	90	DC24	35	1.46	16	В	UL3398	AWG18	3000	6.35×10 ⁻³	470×10 ⁶	0.035	0.127	0.055	3.45
НВ	20	160	175	DC24	45	1.88	13	В	UL3398	AWG16	2500	1.37×10 ⁻²	10×10^{8}	0.065	0.200	0.070	5.9
HBR	20	160	175	DC24	45	1.88	13	В	UL3398	AWG16	2500	1.90×10-2	10×10 ⁸	0.065	0.200	0.070	7.1
HBP	20	160	175	DC24	45	1.88	13	В	UL3398	AWG16	2500	1.90×10-2	$10 imes 10^8$	0.065	0.200	0.070	7.1
НВ	25	320	350	DC24	60	2.5	9.6	В	UL3398	AWG16	2000	3.58×10 ⁻²	$20 imes 10^8$	0.085	0.275	0.125	10.5
HBR	25	320	350	DC24	60	2.5	9.6	В	UL3398	AWG16	2000	4.83×10 ⁻²	$20 imes 10^8$	0.085	0.275	0.125	12.2
HBP	25	320	350	DC24	60	2.5	9.6	В	UL3398	AWG16	2000	4.83×10 ⁻²	$20 imes 10^8$	0.085	0.275	0.125	12.2


Unit [mm]


Size				R	adial di	rection	dimension	ıs				Axial direction dimensions							
0120	A1	A2	A3	C1	C2	C3	V1	V2	V3	Y	Z	н	J	к	L	Р	х	a	
06	63	46	34.5	80	72	35	3-3.1	3-6.3	3-5.5	5	6-60°	18	3.5	2.1	22	7.3	2.5	0.2±0.05	
08	80	60	41.5	100	90	42	3-4.1	3-8	3-7	6	6-60°	20	4.3	2.6	24.5	8.3	2.85	0.2±0.05	
10	100	76	51.5	125	112	52	3-5.1	3-11	3-9	7	6-60°	22	5	3.1	28.1	9	3.3	0.2±0.05	
12	125	95	61.5	150	137	62	3-6.1	3-12	3-11	7	6-60°	24	5.5	3.6	31	9.3	3.3	0.3 ^{+0.05} -0.1	
16	160	120	79.5	190	175	80	3-8.2	3-15	3-14	9.5	6-60°	26	6	4.1	35	11.7	3.5	0.3 ^{+0.05} -0.1	
20	200	158	99.5	230	215	100	3-10.2	3-18	3-16.2	9.5	6-60°	30	7	5.1	41.4	13.4	4.9	0.5 ⁰ -0.2	
25	250	210	124.5	290	270	125	4-12.2	4-22	4-20	11.5	8-45°	35	8	6.1	47.9	16	5.5	0.5 ⁰ -0.2	

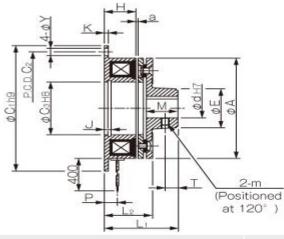
HB BRAKE

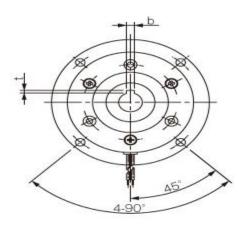
: slim, space-saving

HBR-

Unit [mm]

<u> </u>		Radial	direction dim	ensions				Axial o	direction dim	ensions		
Size	А	C1	C2	C3	Y	н	J	к	L	Μ	Р	a
06	63	80	72	35	5	18	3.5	2.1	25.5	15	7.3	0.2 ± 0.05
08	80	100	90	42	6	20	4.3	2.6	28.5	20	8.3	0.2 ± 0.05
10	100	125	112	52	7	22	5	3.1	33.1	25	9	0.2 ± 0.05
12	125	150	137	62	7	24	5.5	3.6	37	30	9.3	0.3+0.05
16	160	190	175	80	9.5	26	6	4.1	42	38	11.7	0.3 ^{+0.05} -0.1
20	200	230	215	100	9.5	30	7	5.1	50.4	45	13.4	0.5° _{-0.2}
25	250	290	270	125	11.5	35	8	6.1	58.9	54	16	0.5° _{-0.2}


				Shaft bore dimensions		
	Size	1.1.7	Models compliant	with JIS standards	Models compliant with	the old JIS standards
		d H7	b P9	t	b P9	t
	06	12	4-0.012	1.5 ^{+0.5} 0	4 ^{+0.050} +0.020	1.5 ^{+0.5} 0
	08	15	5-0.012	2 ^{+0.5} 0	5 ^{+0.050} +0.020	2 ^{+0.5} 0
	08	15	5-0.012	2 ^{+0.5} 0	5 ^{+0.050} +0.020	2 ^{+0.5} 0
	08	20	6 ^{-0.012} -0.042	2.5 ^{+0.5} 0	5 ^{+0.050} +0.020	2 ^{+0.5} 0
	10	20	6 ^{-0.012} -0.042	2.5 ^{+0.5} 0	5 ^{+0.050} +0.020	2 ^{+0.5} 0
	10	25	8 ^{-0.015} -0.051	3 ^{+0.5} 0	7 ^{+0.061} +0.025	3 ^{+0.5} 0
	12	25	8 ^{-0.015} -0.051	3 ^{+0.5} 0	7 ^{+0.061} +0.025	3 ^{+0.5} 0
	12	30	8 ^{-0.015} -0.051	3 ^{+0.5} 0	7 ^{+0.061} +0.025	3 ^{+0.5} 0
	16	30	8 ^{-0.015} -0.051	3 ^{+0.5} 0	7 ^{+0.061} +0.025	3 ^{+0.5} 0
	10	40	12 ^{-0.018} -0.061	3 ^{+0.5} 0	10 ^{+0.061} +0.025	3.5 ^{+0.5} ₀
	20	40	12-0.018	3 ^{+0.5} 0	10 ^{+0.061} +0.025	3.5 ^{+0.5} ₀
37	20	50	14-0.018	3.5 ^{+0.5} ₀	$12^{+0.075}_{-0.032}$	3.5 ^{+0.5} ₀
	25	50	14 ^{-0.018} -0.061	3.5 ^{+0.5} ₀	$12^{+0.075}_{-0.032}$	3.5 ^{+0.5} ₀
	25	60	18 ^{-0.018} -0.061	4 ^{+0.5} 0	$15^{+0.075}_{+0.032}$	5 ^{+0.5}


HB BRAKE

HB BRAKE

: easy-to-use standard-shape

Unit [mm]

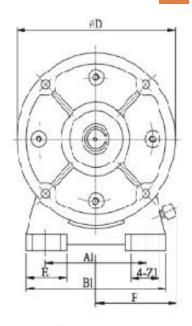
C:			Radial d	irection di	imensions						Axial c	lirection c	limensions	5		
Size	А	C1	C2	C3	Е	Y	m	н	J	К	L1	L2	м	Р	т	a
06	63	80	72	35	26	5	M4	18	3.5	2.1	37	25.5	15	7.3	6	0.2 ± 0.05
08	80	100	90	42	31	6	M5	20	4.3	2.6	44.5	28.5	20	8.3	8	0.2±0.05
10	100	125	112	52	41	7	M5	22	5	3.1	53.1	33.1	25	9	10	0.2±0.05
12	125	150	137	62	49	7	M6	24	5.5	3.6	61	37	30	9.3	12	0.3 ^{+0.05} -0.1
16	160	190	175	80	65	9.5	M8	26	6	4.1	73	42	38	11.7	15	0.3 ^{+0.05} -0.1
20	200	230	215	100	83	9.5	M8	30	7	5.1	86.4	50.4	45	13.4	18	0.5° _{-0.2}
25	250	290	270	125	105	11.5	M10	35	8	6.1	101.9	58.9	54	16	22	0.5° _{-0.2}

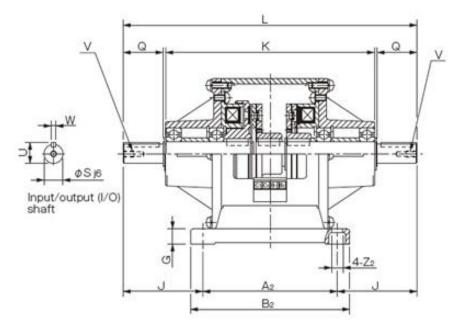
Unit [mm]

			Shaft bore dimensions		
Size	d H7	Models compliant	with JIS standards	Models compliant with t	he old JIS standards
	d H7	b P9	t	b P9	t
06	12	4-0.012	1.5 ^{+0.5} 0	4 ^{+0.050} +0.020	1.5 ^{+0.5} 0
00	15	5-0.012-0.042	2 ^{+0.5} 0	5 ^{+0.050} +0.020	2 ^{+0.5} 0
08	15	5 ^{-0.012} -0.042	2 ^{+0.5} 0	5 ^{+0.050} +0.020	2 ^{+0.5} 0
08	20	6 ^{-0.012} _{-0.042}	2.5 ^{+0.5} 0	5 ^{+0.050} +0.020	2 ^{+0.5} 0
10	20	6 ^{-0.012} _{-0.042}	2.5 ^{+0.5} 0	5 ^{+0.050} +0.020	2 ^{+0.5} 0
10	25	8 ^{-0.015} -0.051	3 ^{+0.5} 0	7 ^{+0.061} +0.025	3 ^{+0.5} 0
10	25	8 ^{-0.015} 0.051	3 ^{+0.5} 0	7 ^{+0.061} +0.025	3 ^{+0.5} 0
12	30	8 ^{-0.015} 0.051	3 ^{+0.5} 0	7 ^{+0.061} +0.025	3 ^{+0.5} 0
17	30	8 ^{-0.015} -0.051	3 ^{+0.5} 0	7 ^{+0.061} +0.025	3 ^{+0.5} 0
16	40	12 ^{-0.018} -0.061	3 ^{+0.5} 0	10 ^{+0.061} +0.025	3.5 ^{+0.5} 0
20	40	12 ^{-0.018} -0.061	3 ^{+0.5} 0	10 ^{+0.061} +0.025	3.5 ^{+0.5} ₀
20	50	14 ^{-0.018} -0.061	3.5 ^{+0.5} ₀	12 ^{+0.075} +0.032	3.5 ^{+0.5} ₀
38	50	14 ^{-0.018} -0.061	3.5 ^{+0.5} ₀	12 ^{+0.075} +0.032	3.5 ^{+0.5} ₀
25	60	18 ^{-0.018} -0.061	4 ^{+0.5} 0	15 ^{+0.075} +0.032	5 ^{+0.5}

HCB CLUTCH/BRAKE UNIT –Butt shaft Construction

This design preserves the performance of clutch and brake to the maximum extent. Its construction is sturdy, yet light mass. Its easy-to-use butt-connected construction is drip proof, making it suitable for a variety of general industrial machinery applications. Mounting is simple and service. life is long.




Design	Split-shaft
Form	Drip-proof
Output	Shaft
Input	Shaft
Torque	0.24~18kg.m

• Specifications

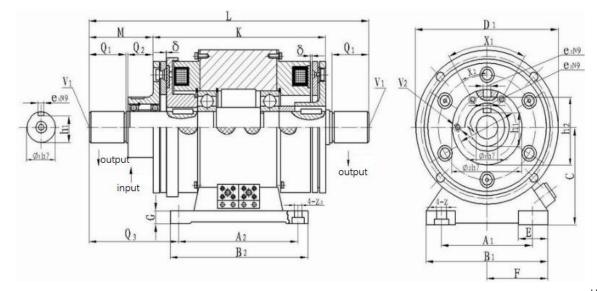
Model	Size	Dynamic friction torque Td [i • m]	Static friction torque Ts [1 • m]		(at Wattage ₩]	20 ℃ Current Å]) Resistance $(1/2)$	Heat resistance class	Max. rotation speed f_{1} in $^{-1}$	Rotating part moment of inertia J k[g • m²]	Total work performed until readjust ment of the air gap ET 【]	Armature pull-in time ta إ	Torque rise time tp ≰]	Torque extinction time td {	Mass [{g]
HCB-06-12	06	5	5.5	24 DC	11	0.46	52	В	3000	1.28×10-4	36×10 ⁶	C: 0.020/B: 0.015	C: 0.041/B: 0.033	C: 0.020/B: 0.015	2.1
HCB-08-12	08	10	11	24 DC	15	0.63	38	В	3000	3.70×10-4	60×10 ⁶	C: 0.023/B: 0.016	C: 0.051/B: 0.042	C: 0.030/B: 0.025	4.2
HCB-10-12	10	20	22	24 DC	20	0.83	29	В	3000	1.40×10 ⁻³	130×10 ⁶	C: 0.025/B: 0.018	C: 0.063/B: 0.056	C: 0.050/B: 0.030	6.8
HCB-12-12	12	40	45	24 DC	25	1.04	23	В	3000	3.85×10 ⁻³	250×10 ⁶	C: 0.040/B: 0.027	C: 0.115/B: 0.090	C: 0.065/B: 0.050	12
HCB-16-12	16	80	90	24 DC	35	1.46	16	В	3000	1.35×10 ⁻²	470×10 ⁶	C: 0.050/B: 0.035	C: 0.160/B: 0.127	C: 0.085/B: 0.055	22
HCB-20-12	20	160	175	24 DC	45	1.86	13	В	2500	4.08×10 ⁻²	10×10 ⁶	C: 0.090/B: 0.065	C: 0.250/B: 0207	C: 0.130/B: 0.070	49

Unit [mm]

c :							Dimen	isions o	of pa	rt								Dimensions of shaft	
Size	A1	A2	B 1	B2	С	D	E	F	G	J	К	L	Z1	Z2	Q	S	U	V	W
06	65	90	90	105	65	100	27.5	61	10	48.5	132	187	13.5	6.5	25	11	12.5	M4×0.7, length: 8	4
08	80	110	110	130	80	125	32.5	72	12	63	171	236	15.5	9	30	14	16	M4×0.7, length: 8	5
10	105	135	140	160	90	150	35	81	15	80	210	295	20	11.5	40	19	21	M4×0.7, length: 8	5
12	135	160	175	185	112	190	42.5	97	15	108	270	376	24.5	11.5	50	24	27	M6×1, length: 11	7
16	155	200	200	230	132	230	45	109	18	145	362	490	28	14	60	28	31	M6×1, length: 11	7
20	195	240	240	270	165	290	47.5	124	20	188	448	616	28	14	80	38	41.5	M10×1.5, length: 17	10

HCB CLUTCH/BRAKE UNIT : Through-shaft Construction

This design preserves the performance of clutch and brake to the maximum extent. Its construction is sturdy, yet light mass. Its compact through-shaft construction is open, making it suitable for a variety of general industrial machinery applications. Mounting is simple and service life is long.



Design	Through-shaft
Form	Open type
Output	Hub at 2 point of shaft
Input	Shaft or hub
Torque	0.5~40kg.m

Specifications

				Coil	(at	20 ℃)				-				
Model	Size	Dynamic friction torque Td [l· m]	Static friction torque Ts 🕅 • m]	Voltage ∦]	Wattage №]	Current ∦]	Resistance 🏚]	Heat resistance class	Max. rotation speed thin ⁻¹]	Rotating part moment of inertia J k[g • m²]	Total work performed until readjustment of the air gap ET 【]	Armature pull-in time ta 🕄	Torque build-up time tp ≰]	Torque decaying time td	Mass [{g]
HCB-06-20	06	5	5.5	24 DC	11	0.46	52	В	3000	1.43×10-4	36×10 ⁶	C: 0.020/B: 0.015	C: 0.041/B: 0.033	C: 0.020/B: 0.015	1.5
HCB-08-20	08	10	11	24 DC	15	0.63	38	В	3000	4.23×10-4	60×10 ⁶	C: 0.023/B: 0.016	C: 0.051/B: 0.042	C: 0.030/B: 0.025	2.7
HCB-10-20	10	20	22	24 DC	20	0.83	29	В	3000	1.42×10 ⁻³	130×10 ⁶	C: 0.025/B: 0.018	C: 0.063/B: 0.056	C: 0.050/B: 0.030	5.5
HCB-12-20	12	40	45	24 DC	25	1.04	23	В	3000	4.18×10 ⁻³	250×10 ⁶	C: 0.040/B: 0.027	C: 0.115/B: 0.090	C: 0.065/B: 0.050	9.6
HCB-16-20	16	80	90	24 DC	35	1.46	16	В	3000	1.34×10 ⁻²	470×10 ⁶	C: 0.050/B: 0.035	C: 0.160/B: 0.127	C: 0.085/B: 0.055	18.5
HCB-20-20	20	160	175	24 DC	45	1.88	13	В	2500	4.13×10-2	10×10 ⁸	C: 0.090/B: 0.065	C: 0.250/B: 0.200	C: 0.130/B: 0.070	35
HCB-25-20	25	320	350	24 DC	60	2.50	9.6	В	2000	1.02×10 ⁻¹	20×10 ⁸	C: 0.115/B: 0.085	C: 0.335/B: 0.275	C: 0.210/B: 0.125	64

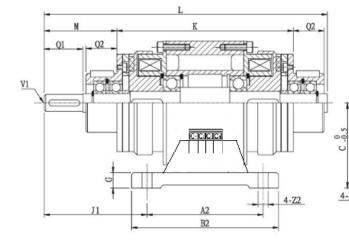
HCB CLUTCH/BRAKE UNIT : Through-shaft Construction

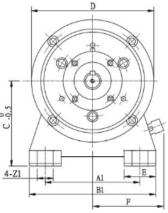
Unit [mm]

Size								Dime	nsio	ns of	part											Din	nension	s of	shaft			
Size	A1	A2	B1	B2	с	D	Е	F	G	JI	J2	к	L	м	Ν	Z1	Z2	QI	Q2	S1	S2	U1	U2	V1	V2	XI	X2	W1, 2
6	52.5	75	80	90	55	80	27.5	57	10	65.5	40.5	105.5	181	47	33	13.5	6.5	25	20	11	38	12.5	39.5	M4×0.7,	3-M4×0.7, length: 4	3-120°	60°	4
8	65	90	90	105	65	100	27.5	60	10	78.5	48.5	126.5	217	57	37	13.5	6.5	30	25	14	45	16	47	, length: 8	3-M4×0.7, length: 6	3-120°	60°	5
10	80	110	110	130	80	125	32	68	12	98	62	154	270	72	47	15.5	9	40	30	19	55	21	57	M6×1, length:	4-M4×C length:	4-90°	45°	5
12	105	135	140	160	90	150	35	81	15	121	74	184	330	92	52	20	11.5	50	40	24	64	27	67	ength: 11	4-M4×0.7, Iength: 8	4-90°	45°	7
16	135	160	175	185	112	190	42	97	15	149	90	221	399	113	62	24.5	11.5	60	50	28	75	31	78	١W	6-M5×0.8, length: 8	6-60°	30°	7
20	155	200	200	230	132	230	45	110	18	187	117	276	504	142	74.5	28	14	80	60	38	90	41.5	93.5	M10×1.5, length:	4-M6×1, length: 12	4-90°	45°	10
2 25	195	240	240	270	160	290	47	129	20	238	154	334	632	183	101.5	28	14	110	70	42	115	45.5	118.5	⊫ 17	8-M6×1, length: 12	8-45°	22.5°	12

HCC DOUBLE CLUTCH UNIT

These are compact, open units that place two clutches on a through-shaft. Since one unit can perform many functions, and is also easy to install and handle, the transmission mechanism can be simplified.




Design	Through-shaft
Form	Open type
Output	Hub at 2 points or shaft
Input	Shaft or hub
Torque	0.5~20kg.m

Specifications

		Dynamic fric	Static frict	Co	il (at	20 ℃]		Heat	Max. rot		art moment f [kg•m²]	Total w re the	Armatur	Torque	Torque c	
Model	Size	Dynamic friction torque Td N • m]	friction torque Ts N • m]	Voltage V]	Wattage W]	Current A]	Resistance Ω]	Heat resistance class	Max. rotation speed min ⁻¹]	For hub input	For shaft input	Total work performed until readjustment of the air gap ET J]	Armature pull-in time ta s]	Torque build-up time tp s]	Torque decaying time td s]	Mass kg]
HCC-06	06	5	5.5	DC24	11	0.46	52	В	3000	1.55×10-4	1.05×10 ⁻⁴	36×106	C: 0.020/B: 0.015	C: 0.041/B: 0.033	C: 0.020/B: 0.015	1.7
HCC-08	08	10	11	DC24	15	0.63	38	В	3000	4.75×10-4	3.00×10 ⁻⁴	60×106	C: 0.023/B: 0.016	C: 0.051/B: 0.042	C: 0.030/B: 0.025	3.1
НСС-10	10	20	22	DC24	20	0.83	29	В	3000	1.44×10 ⁻³	9.45×10 ⁻⁴	130×106	C: 0.025/B: 0.018	C: 0.063/B: 0.056	C: 0.050/B: 0.030	6.5
HCC-12	12	40	45	DC24	25	1.04	23	В	3000	4.50×10 ⁻³	2.75×10 ⁻³	250×106	C: 0.040/B: 0.027	C: 0.115/B: 0.090	C: 0.065/B: 0.050	10.5
HCC-16	16	80	90	DC24	35	1.46	16	В	3000	1.34×10 ⁻²	9.05×10 ⁻³	470×106	C: 0.050/B: 0.035	C: 0.160/B: 0.127	C: 0.085/B: 0.055	21
нсс-20 43	20	160	175	DC24	45	1.88	13	В	2500	4.18×10 ⁻²	2.65×10 ⁻²	10×108	C: 0.090/B: 0.065	C: 0.250/B: 0.200	C: 0.130/B: 0.070	38.5
	25	320	350	DC24	60	2.50	9.6	В	2000	9.80×10 ⁻²	7.45×10 ⁻²	20×108	C: 0.115/B: 0.085	C: 0.335/B: 0.275	C: 0.210/B: 0.125	70

HCC DOUBLE CLUTCH UNIT

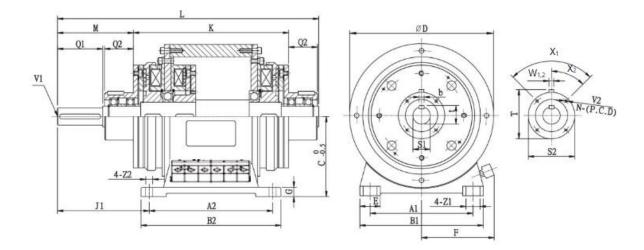
Unit [mm]

C:								Dir	mension	s of part							
Size	A1	A2	B 1	B2	С	D	Е	F	G	JI	J2	к	L	м	Ν	Z1	Z2
06	52.5	75	80	90	55	80	27.5	57	10	65.5	40.5	111.5	181	47	33	13.5	6.5
08	65	90	90	105	65	100	27.5	60	10	78.5	48.5	133	217	57	37	13.5	6.5
10	80	110	110	130	80	125	32	68	12	98	58	162	266	72	47	15.5	9
12	105	135	140	160	90	150	35	81	15	121	71	193	327	92	52	20	11.5
16	135	160	175	185	112	190	42	97	15	149	88	232	397	113	62	24.5	11.5
20	155	200	200	230	132	230	45	110	18	187	105	290	492	142	74.5	28	14
25	195	240	240	270	160	290	47	129	20	238	125	350	603	183	101.5	28	14

Size							Shaft dimensions				
Size	Ql	Q2	S1	S2	U1	U2	V1	V2	X1	X2	W1, 2
06	25	20	11	38	12.5	39.5	M4×0.7, length: 8	3-M4×0.7, length: 4	3° to 120°	60°	4
08	30	25	14	45	16	47	M4×0.7, length: 8	3-M4×0.7, length: 6	3° to 120°	60°	5
10	40	30	19	55	21	57	M6×1, length: 11	4-M4×0.7, length: 8	4° to 90°	45°	5
12	50	40	24	64	27	67	M6×1, length: 11	4-M4×0.7, length: 8	4° to 90°	45°	7
16	60	50	28	75	31	78	M6×1, length: 11	6-M5×0.8, length: 8	6° to 60°	30°	7
20	80	60	38	90	41.5	93.5	M10×1.5, length: 17	4-M6×1, length: 12	4° to 90°	45°	10
25	110	70	42	115	45.5	118.5	M10×1.5, length: 17	8-M6×1, length: 12	8° to 45°	22.5°	12

HCCB DOUBLE CLUTCH/BRAKE UNIT

These are units unlike any other, which combine two clutches with a brake in a compact form factor. They provide high-precision positioning and applied control of complex operations from a single unit. Installation and handling are as easy as on other units.



Design	Through-shaft
Form	Open type
Output	Shaft or hub
Input	Hub
Torque	0.5~20kg.m

Specifications

Model	Size	Dynamic friction torque Td 忆·m]	Static friction torque Ts 礼・m]	Coi Voltage ∦]	[(at Wattage ₩]	20 ℃ Current Å]		Heat resistance class	Max. rotation speed thin ⁻¹	Rotating part moment of inertia J [{g • m²]	Total work performed until readjustment of the air gap ET	Armature pull-in time ta	Torque build-up time tp s	Torque decaying time td	Mass [g]
НССВ-06	06	5	5.5	DC24	11	0.46	52	В		_		<u>е</u> С: 0.020/В: 0.015	<u>د</u> C: 0.041/B: 0.033	<u>م</u> C: 0.020/B: 0.015	4
НССВ-08		10										C: 0.023/B: 0.016	,	,	6
НССВ-10	10	20	22	DC24	20	0.83	29	В	3000	2.12×10 ⁻³	130×10 ⁶	C: 0.025/B: 0.018	C:0.063 / B:0.056	C: 0.050/B: 0.030	9
HCCB-12	12	40	45	DC24	25	1.04	23	В	3000	6.35×10 ⁻³	250×106	C: 0.040/B: 0.027	C: 0.115/B: 0.090	C: 0.065/B: 0.050	17
HCCB-16	16	80	90	DC24	35	1.46	16	В	3000	1.99×10 ⁻²	470×10 ⁶	C: 0.050/B: 0.035	C: 0.160/B: 0.127	C: 0.085/B: 0.055	29
НССВ-20	20	160	175	DC24	45	1.88	13	В	2500	6.15×10 ⁻²	10×10 ⁸	C: 0.090/B: 0.065	C: 0.250/B: 0.200	C: 0.130/B: 0.070	58

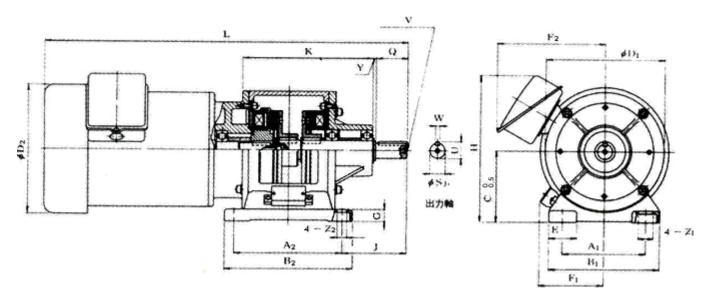
HCCB DOUBLE CLUTCH/BRAKE UNIT

C :								Di	mensions	s of part							
Size	A1	A2	B 1	B2	С	D	Е	F	G	JI	J2	к	L	м	Ν	Z1	Z2
06	60	90	90	105	65	100	27.5	60	10	73	48	142	211	47	33	13.5	6.5
08	80	110	110	130	80	125	32	68	12	83	53	162	246	57	37	15	9
10	105	135	140	160	90	150	35	81	15	99	59	190	294	72	47	20	11
12	135	160	175	185	112	190	42	97	15	124	74	222	358	93	52	24	11
16	155	200	200	230	132	230	45	110	18	150	90	272	440	114	62	28	14
20	195	240	240	270	160	290	47	129	20	197	114	348	551	143	74.5	28	14

Unit [mm]

c •							Dimensions of shaf	t			
Size	Q1	Q2	S 1	S2	U1	U2	V1	V2	X1	X2	W1, 2
06	25	20	11	38	12.5	39.5	M4×0.7, length: 8	3-M4×0.7, length: 4	3° to 120°	60°	4
08	30	25	14	45	16	47	M4×0.7, length: 8	3-M4×0.7, length: 6	3° to 120°	60°	5
10	40	30	19	55	21	57	M6×1, length: 9	4-M4×0.7, length: 8	4° to 90°	45°	5
12	50	40	24	64	27	67	M6×1, length: 9	4-M4×0.7, length: 8	4° to 90°	45°	7
16	60	50	28	75	31	78	M6×1, length: 9	6-M5×0.8, length: 8	6° to 60°	30°	7
20	80	60	38	90	41.5	93.5	M10×1.5, length: 17	4-M6×1, length: 12	4° to 90°	45°	10

HCBM MOTOR-CONNECTED CLUTCH/BRAKE UNIT



This is a practical unit in which an induction motor is directly connected to clutch/brake units in advance. This type directly connects 3-phase induction motor to clutch/brake units, requiring less installation space and eliminating cumbersome tasks such as centering and processing of mounts. Since the output shaft is simply engaged to the load, handling is easy.

Specifications

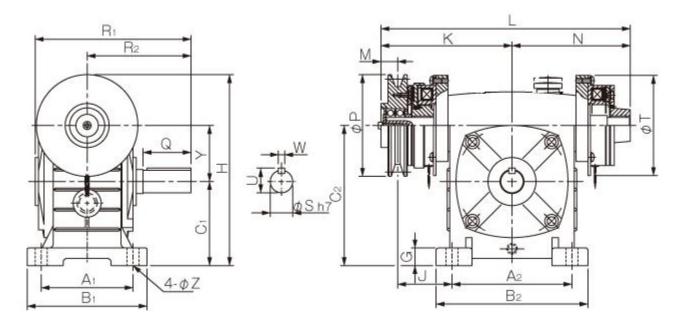
						Coil(c	ıt 20 ℃)			R					
Model	Size	Motor output[kW] 4P	Dynamic friction torque Td [N · m]	Static friction torque Ts [N · m]	Voltage [V]	Wattage [W]	Current [A]	Resistance [Ω]	Heat resistance class	Rotating part moment of inertia [kg·m²]	Total work performed until readjustment of the air gap ET[J]	Armature pull-in time ta[s]	Torque build-up time tp[s]	Torque decaying time td[s]	Mass [kg]
HCBM-06-4B	06	0.2	5	5.5	DC24	11	0.46	52	В	1.28×10 ⁻⁴	36×10 ⁶		C:0.041 B:0.033		8.9
HCBM-08-4B	08	0.4	10	11	DC24	15	0.63	38	В	3.70×10-4	60×10 ⁶		C:0.051 B:0.042		13
НСВМ-10-4В	10	0.75	20	22	DC24	20	0.83	29	В	1.40×10 ⁻³	130×10¢		C:0.063 B:0.056		20
HCBM-12-4B	12	1.5	40	45	DC24	25	1.04	23	в	3.85 × 10⁻³	250×10⁰		C:0.115 B:0.090		41
HCBM-16-4B	16	2.2 3.7	80	90	DC24	35	1.46	16	В	1.35×10 ⁻²	470×10 ⁶		C:0.160 B:0.127		54 69

HCBM MOTOR-CONNECTED CLUTCH/BRAKE UNIT

Unit [mm]

Model								Din	nensio	ons of p	art										Dime	nsions of shaft	
Model	A1	A2	B 1	B2	С	D1	D2	Е	F1	F2	G	J	Κ	L	Н	Y	Z1	Z2	Q	S	U	V	W
НСВМ-06-4В	65	90	90	105	65	100	140	27.5	60	-	10	49	108	335	-	3	13.5	6.5	25	11	12.5	M4×0.7length8	4
HCBM-08-4B	80	110	110	130	80	125	140	32.5	68	130	12	63	136	392	165	2.5	15	9	30	14	16	M4×0.7length8	5
HCBM-10-4B	105	135	140	160	90	150	146	35	81	140	15	80.5	163	451	185	3	20	11	40	19	21	M6×1length11	5
HCBM-12-4B	135	160	175	185	112	190	185	42.5	97	153.5	15	108	205	535	-	3	24	11	50	24	27	M6×1length11	7
HCBM-16-4B	155	200	200	230	132	230	220 230	45	110	164 175	18	135 145	268	635 660	-	4	28	14	50 60	24 28	27 31	M6×1length11	7

HCBW WORM REDUCER INTERGRATED CLUTCH/BRAKE UNIT



This a practical unit in which the worm reducer is directly connected to clutch/brake units in advance. A standard V belt pulley is installed on the input part of the clutch. Integration keeps self-inertia low, so the efficiency of starting and stopping is good. It can be combined with a speed changer for a wide range of speed changes, and excellent performance can be achieved in many applications, such as 360° rotation stop of the output shaft.

				Coi	l (at	20 ℃)	-		0 70	7	×	-	7
Model	Size	Dynamic friction torque Td [\! • m]	Static friction torque Ts [{i • m]	Voltage ∦]	Wattage [V]	Current [Å]	Resistance 🏚]	leat resistance class	Max. rotation speed thin ⁻¹]	Rotating part moment of inertia J {{g · m²]	Total work performed until readjustment of the gap ET 【]	rmature pull-in time ta ≰]	Torque build-up time tp ≰]	Torque decaying time td ⊈]
HCBW-06-SR	06	5	5.5	DC24	11	0.46	52	В	1800	1.56×10 ⁻⁴ 1.76×10 ⁻⁴	36×10 ⁶	C: 0.020/B: 0.015	C: 0.041/B: 0.033	C: 0.020/B: 0.015
HCBW-08-SR	08	10	11	DC24	11	0.63	38	В	1800	4.70×10 ⁻⁴ 4.85×10 ⁻⁴	60×10 ⁶	C: 0.023/B: 0.016	C: 0.051/B: 0.042	C: 0.030/B: 0.025
HCBW-10-SR	10	20	22	DC24	15	0.83	29	В	1800	1.48×10 ⁻³ 1.61×10 ⁻³	130×10 ⁶	C: 0.025/B: 0.018	C: 0.063/B: 0.056	C: 0.050/B: 0.030
HCBW-12-SR	12	40	45	DC24	25	1.04	23	В	1800	4.23×10 ⁻³ 4.35×10 ⁻³	250×10°	C: 0.040/B: 0.027	С: 0.115/В: 0.090	C: 0.065/B: 0.050

		Input po	ırt				Speed re	educer					
Model	Size	Pulley	Belt model	Туре	Output shaft		Spee	d reduct	tion ratio	o 1/□		Oil volume	Mass [kg]
		diameter [mm]	ben moder	туре	rated values	10	20	30	40	50	60	[L]	[Kg]
HCBW-06-SR	04	74.0 (2 :)	A-1	WU50	Torque [N•m]	35	38	44	-	-	-	0.3	9
HCD VV-00-3K	08	76.2 (3 in.)	A-1	WU5U	O.H.L. [N]	950	1313	1548	-	-	-	0.3	9
HCBW-06-SR	04	76.2 (3 in.)	A-1	WU60	Torque [N•m]	-	-	-	64	56	56	0.4	11
HCD VV-00-3K	08	70.2 (3 m.)	A-1	WU00	O.H.L. [N]	-	-	-	2450	2450	2450	0.4	11
HCBW-08-SR	00	101 + (4 m)	A 1	WU60	Torque [N•m]	56	57	72	-	-	-	0.4	11.5
HCD VV-00-3K	08	101.6 (4 in.)	4 in.) A-1	WU00	O.H.L. [N]	1421	1862	2322	-	-	-	0.4	11.5
	~~	101 ((4 *)	. 1	WU70	Torque [N•m]	-	-	-	143	136	138	0.7	145
HCBW-08-SR	08	101.6 (4 in.)	A-1	w0/0	O.H.L. [N]	-	-	-	2646	2646	2646	0.7	16.5
	10	107/5.)	D 1	WU70	Torque [N•m]	120	126	150	-	-	-	0.7	17.5
HCBW-10-SR	10	127 (5 in.)	B-1	w0/0	O.H.L. [N]	1490	2077	2440	-	-	-	0.7	17.5
	10	107/5.)	B-1	WU80	Torque [N•m]	-	-	-	191	187	167	1.2	23.5
HCBW-10-SR	10	127 (5 in.)	B-1	WU80	O.H.L. [N]	-	-	-	3057	3146	3155	1.2	23.5
	10	150 444 5 5			Torque [N•m]	166	167	213	-	-	-	1.0	0.5
HCBW-12-SR	12	152.4 (6 in.)	B-1	WU80	O.H.L. [N]	1715	2528	2871	-	-	-	1.2	25
	10	150 414 * 1	D 1	14/11/00	Torque [N•m]	-	-	-	373	352	336	2.0	40
HCBW-12-SR	12	152.4 (6 in.)	B-1	WU100	O.H.L. [N]	-	-	-	3665	3783	4126	2.9	40

HCBW WORM REDUCER INTERGRATED CLUTCH/BRAKE UNIT

Dimensions of part Dimensions of shaft Model A1 A2 B2 C1 C2 G н κ R1 R2 YZQ S U W B1 L Μ Ν Ρ Т HCBW-06-SR(WU50) 110 120 140 20 95 80 130 15 180 63 133 250 15 117 76.2 145 100 80 50 11 40 22 5 7 HCBW-06-SR(WU60) 105 120 130 150 90 150 20 205 56 131 246 15 115 76.2 165 110 80 60 11 50 22 25 105 120 130 150 137 260 HCBW-08-SR(WU60) 90 150 15 205 59 18 123 101.6 165 109 100 60 11 45 22 25 7 HCBW-08-SR(WU70) 115 150 150 190 105 175 15 235 61 154 294 18 140 101.6 195 130 100 70 15 60 28 31 7 HCBW-10-SR(WU70) 115 150 150 190 105 175 17 238 68 164 312 21 148 127 195 120 125 70 15 50 28 31 7 HCBW-10-SR(WU80) 135 180 170 220 120 265 63 174 332 21 158 127 210 133 80 15 65 32 35.5 10 200 17 125 HCBW-12-SR(WU80) 135 180 170 220 120 200 20 275 67.5 179 345 21.5 166 152.4 210 133 150 80 15 58 32 35.5 10 155 220 190 270 150 250 25 HCBW-12-SR(WU100) 327 76.5 210 405 23.5 195 152.4 260 150 150 100 15 65 38 41.5 10

Unit [mm]

HOJOON

51 HMWC/HMWB SERIES: WET-TYPE51 MULTIPLE DISC ELECTROMAGNETICCLUTCH/ BRAKE

OVERVIEW

A wet type multi-disc electromagnetic clutch is a clutch that uses a set of friction plates and separator plates, which are alternately placed between a clutch case and a clutch hub. The clutch operates by using an electromagnetic force to connect and disconnect power. When the clutch is energized, the plates become magnetized, causing the inner and outer plates to connect and generate friction. When the current is cut off, the clutch is disengaged as the friction plate spring pushes the outer plate away.

FEATURES

HIGH-TORQUE COMPACT DESIGN

The HMW series are designed as extremely compact multiple disc units that deliver high torque rates.

LONG LIFE AND LOW MAINTENANCE

The HMW series stationary field design and oil lubrication system significantly reduce wear and maintenance while increasing operational life

QUICK RELEASE TIME

Separator springs between the friction plates allow for quick disconnect when the power is released. These springs also keep the disks from making contact with each other in the disengaged mode.

FAST TORQUE BUILD-UP

An efficiently etched oil path on the friction disk, coupled with special treatment of the friction disks ensures fast response and release time.

HIGH HEAT DISSIPATION

The oil lubrication system provides excellent heat dissipation making the HMW series suitable for heavy duty operation

EASILY CONNECT TO YOUR GEAR PULLEY OR COUPLING

The series is made to be used with the UN drive cup, the cup slides between the friction disk tangs and has a tapped bolt pattern so you can attach your bearing mounted gear pulley.

HMWC-00

APPLICATIONS & TORQUE RANGE

Packaging Machinery

They're used in packaging lines for precise control during filling, sealing, and labeling processes.

Food Processing Equipment

Wet clutches play a role in food mixers, conveyors, and slicers.

Machine Tools

In metalworking machines, wet clutches enable smooth engagement and disengagement.

Office Machinery

Think of photocopiers, printers, and other office equipment that require precise clutch operation.

Industrial Processes

From steel rolling mills to mining equipment, wet clutches help regulate speed and torque.

• Marine and Boating

Wet clutches are essential for marine propulsion systems, allowing smooth shifting and reversing.

Conveyors and Hoists

In material handling systems, wet brakes ensure smooth stops and prevent sudden jolts.

• Printing Presses

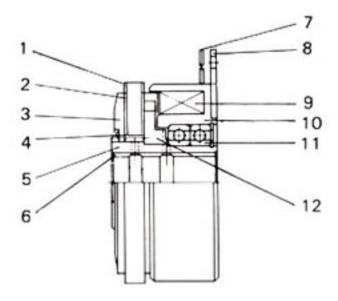
When your favorite magazine gets printed, wet brakes play a role in precise paper feeding and stopping.

Automated Packaging Lines

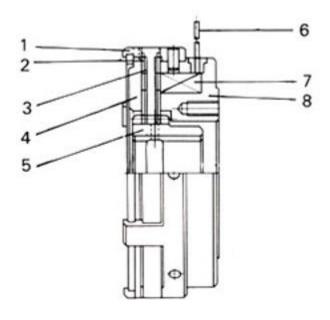
From chocolates to gadgets, wet brakes help package things neatly.

Rolling Mills and Metal Forming Machines

When shaping metal, controlled braking is essential.

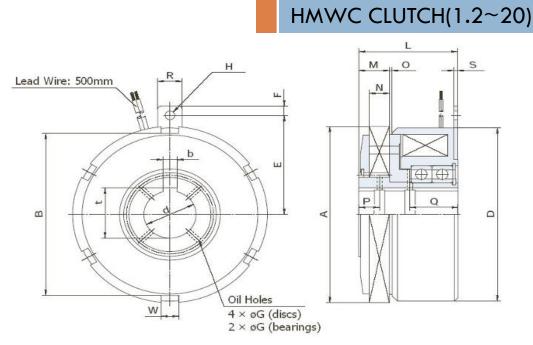

• Elevators and Escalators

Next time you step into an elevator, thank the wet brakes for that smooth ride.


Torque Range

CLUTCH: 1.2 kgm \sim 600 kgm BRAKE: 1.2 kgm \sim 160 kgm

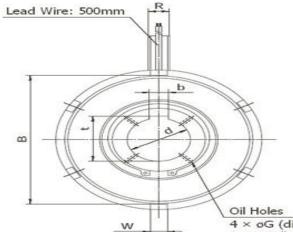
STRUCTURE & OPERATION

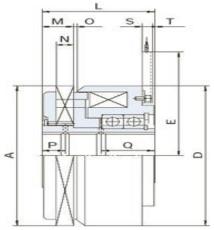

HMWC TYPE CLUTCH

No.	Designation
1	In-plate
2	Out-plate
3	Armature
4	Release Spring
5	Clutch Hub
6	Key Way
7	Lead Wires
8	Anti-rotation Tab
9	Coil
10	Stator
11	Ball Bearing
12	Rotor

No.	Designation
1	Coupling
2	Out-plate
3	In-plate
4	Armature
5	Inner Driver
6	Lead Wires
7	Coil
8	Stator

HMWB TYPE BRAKE

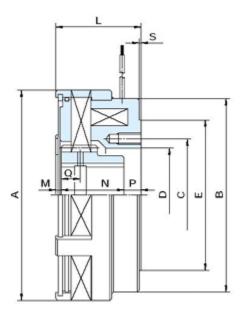

• Specifications

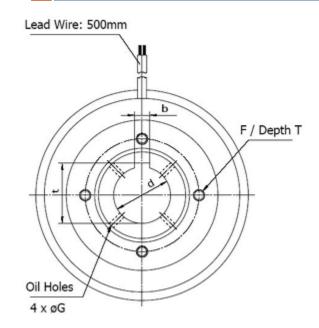

	TORQU	E(kgm)	<		COIL(20°C	C)	AR	J		3	GD	²(kgm²)	
MODEL	DYNAMIC	STATIC	VOLTAGE (DC-V)	WATTAGE (W)	RESISTANCE (Ω)	CURRENT (A)	ARMATURE PULL-IN TIME (sec)	TORQUE BUILD-UP TIME (sec)	TORQUE DECAY TIME (sec)	MAX ALLOWABLE SPEED [rpm]	HUB	OUT-PLATE	MASS (kg)
HMWC-1.2	1.2	2.5		12	49.5	0.48	0.05	0.12	0.04	4,000	0.0011	0.0002	1.4
HMWC-2.5	2.5	5		17	34.0	0.71	0.06	0.15	0.05	3,600	0.0022	0.0005	2.0
HMWC-5	5	10	24	22	26.4	0.91	0.07	0.17	0.06	3,200	0.0053	0.0011	3.0
HMWC-10	10	20		36	16.0	1.5	0.08	0.18	0.07	3,000	0.0128	0.0033	4.8
HMWC-20	20	40		45	12.8	1.9	0.10	0.20	0.10	2,800	0.0228	0.0065	7.7

• Dimensions

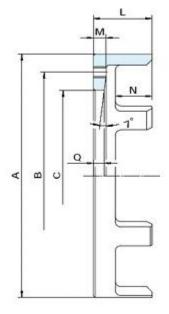
	MODEL	SH	AFT HC	DLE	А	в	с	D	E	P	G	н	L	м	N	0	P	Q	R	S	w
		d	b	t																Ŭ	
	HMWC-1.2	20	6	21.7	80	73	1	78	47	0	2	5.5	45	13.5	8.5	2	10	21.5	12	2	8
	HMWC-2.5	25	œ	26.7	95	87.5	85.5	93	57	0	ω	5.5	49	14.8	9.3	2	Ξ	23.5	14 14	2.3	10
	HMWC-5	30	8	32	112	103	101	110	63	6	ω	5.5	57	17.7	11.7	1.5	12	27.5	14 4	2.3	10
5.	5HMWC-10	40	12	42.5	132	122	120	130	80	0	ω	6.5	63	22	14	2	16	25	16	ω	12
	HMWC-20	50	14	52.5	157	132	142	155	16	8	ω	6.5	73	24.5	14	2	18	28.5	16	ω	12

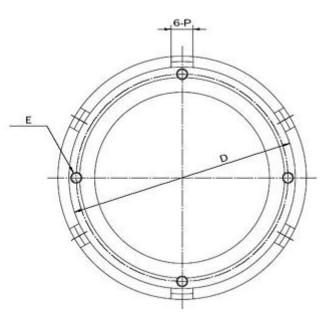
HMWC CLUTCH(40~600)




4 × oG (discs) 2 × oG (bearings)

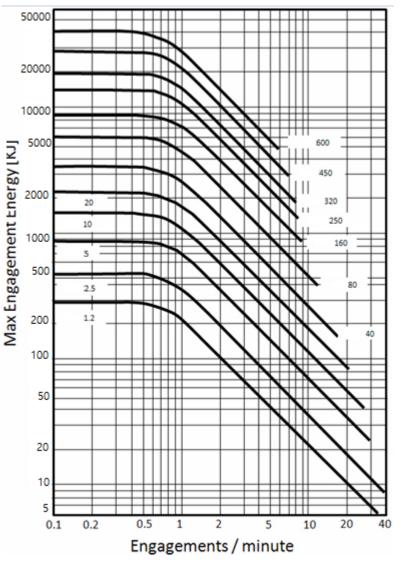
	TORQU	JE(kgm)			COIL(20 °C	:)	≥	Ę		۲.	GD	²(kgm²)	
MODEL	DYNAMIC	STATIC	VOLTAGE (DC-V)	WATTAGE (W)	RESISTANCE (Ω)	CURRENT (A)	ARMATURE PULL-IN TIME (sec)	TORQUE BUILD-UP TIME (sec)	TORQUE DECAY TIME (sec)	MAX ALLOWABLE SPEED [rpm]	HUB	OUT-PLATE	MASS (kg)
HMWC-40	40	80		50	12.0	2.0	0.15	0.32	0.13	2,400	0.103	0.0187	17
HMWC-80	80	160		65	9.6	2.5	0.25	0.60	0.35	2,000	0.285	0.0567	32
HMWC-160	160	320		95	6.5	3.7	0.38	0.70	0.50	1,600	0.793	0.153	56
HMWC-250	250	500	24	110	5.2	4.6	0.55	0.90	0.70	1,400	1.38	0.273	79
HMWC-320	320	640	2-7	130	4.7	5.1	0.70	1.20	1.00	1,200	2.11	0.422	104
HMWC-450	450	900		165	3.3	7.3	1.0	1.50	1.20	1,000	4.1	0.95	140
HMWC-600	600	1200		150	3.9	6.2	1.5	1.80	1.50	900	6.0	2.1	192


		SH/	AFT HO	LE																
M	ODEL	d	b	t	A	В	с	D	E	G	L	Μ	N	0	P	Q	R	5	T	W
HM	WC-40	60	18	63	195	180	178	195	145	4	107	30.2	16.7	ω	22	51	20	10	Ν	16
HM	WC-80	70	20	75	235	218	215	235	160	4	135	40	23.5	4	30	61	20	10	4	22
Ηмν	WC-160	90	25	95	290	265	262	290	200	4	170	49	29	ы	35	75	25	20	ъ	30
Ηмν	WC-250	100	28	106.5	325	300	297	324	220	ა	185	55	32	ы	39	84	30	15	1	40
Ηмν	WC-320	110	28	911	350	320	318	350	230	ъ	210	61	36	10	43	97	30	15	10	40
Ηмν	WC-450	120	32	130	400	363.5	360	392	250	8	220	63	36	10	45	101	30	15	17	50
56 ^{HMV}	WC-600	140	35	151	440	400	395	428	270	œ	255	80	53	10	54	123	30	15	17	50


HMWB BRAKE

	TORQUE	(kgm)	VOLTAGE	WATT		GD ²	MASS	SH	IAFT H	OLE		SCRE	N
MODEL	DYNAMIC	STATIC	(DC-V)	(W	()	(kgm²)	(kg)	d	b	T	m	n	Depth
HMWB-1.2	1.2	2.5		8		0.0002	0.7	20	6	21.7	M5	4	8
HMWB-2.5	2.5	5		12	2	0.0004	1.3	25	8	26.7	M6	4	12
HM₩B-5	5	10		18	3	0.0013	2.0	30	8	32	M6	4	12
HMWB-10	10	20	24	24	1	0.0038	3.3	40	12	42.5	M8	4	12
HM₩B-20	20	40	24	28	3	0.0076	4.5	50	14	52.5	M8	4	14
HMWB-40	40	80		36	5	0.0224	10	60	18	63	M10	4	18
HM₩B-80	80	160		45	5	0.0773	19	70	20	75	M10	4	20
HMWB-160	160	320		80)	0.208	33	90	25	95	M12	6	25
MODEL	A	В	с	D	E	F	L	М		N	Р	Q	S
HMWB-1.2	80	73	42	32	-	2	30	3.5	:	23	3.5	7	-
HMWB-2.5	95	87	50	40	-	3	37	4	:	27	6	8.5	-
HMWB-5	112	103	60	50	80	3	45	3	:	33	9	10	1
HMWB-10	132	122	70	56	95	3	52	4	:	35	13	13	1
HMWB-20	157	142	90	75	110	3	53	5	:	36	12	13	1
HMWB-40	198	180	110	90	130	4	71	6		48	17	16	1
HM₩B-80	238	218	144	120	160	4	77.5	8.5		50	19	19	1
HMWB-160	290	262	174	150	200	4	100	11		68	21	22	1

CLUTCH COUPLING


APPLICATION CLUTH	COUPLING TYPE	Α	В	С	D	E	L	M	N	Р	Q	MASS (kg)
HMWC-1.2	HUN-1.2	82	68	56	74	4-M5	21.5	5.5	13	8	5	0.15
HMWC-2.5	HUN-2.5	97	80	65	88.5	4-M6	23	6	15	10	5	0.22
HMWC-5	HUN-5	114	95	78	104	4-M6	26	6.5	16	10	5.5	0.35
HMWC-10	HUN-10	135	115	95	123	6-M6	32	7	20	12	6	0.51
HMWC-20	HUN-20	160	135	115	146	6-M8	38	10	22	12	9	1.1
HMWC-40	HUN-40	198	160	135	181.5	6-M10	48	12	26	16	10	2.1
HMWC-80	HUN-80	238	200	170	220	6-M12	60	15	34	22	13	3.0
HMWC-160	HUN-160	294	240	200	267	6-M16	75	20	38	30	17	7.4
HMWC-250	HUN-250	330	260	220	304	6-M16	82	20	44	40	17	9.6
HMWC-320	HUN-320	355	280	240	324	6-M18	97	25	52	40	22	13.8
HMWC-450	HUN-450	404	320	280	368	6-M20	105	30	53	50	27	20
HMWC-600	HUN-600	444	360	310	404	8-M20	122	30	72	50	27	25

Allowable Energy

When loads are accelerated or decelerated by a clutch/brake, heat will be generated by sliding friction. This is because frictional energy is converted to heat, so the amount of heat will vary with the conditions of use. Clutches and brakes dissipate this heat externally as they work, but if they cannot dissipate all the heat, they accumulate it internally and the temperatures of the components rise. If temperatures exceed allowable values, malfunctions and damage result. The limit for friction work undergone due to this heat is called allowable energy. The allowable energy is predetermined for each size. Heat dissipation is affected by the mounting situation, rotation speed, atmosphere, and the like. When large loads are accelerated or decelerated, violent slipping occurs, and the frictional surface generates larges amounts of heat. The frictional material and armature can be damaged by even a single engagement. Please refer to the right figure.

CHARACTERISTIC

CHARACTERISTIC

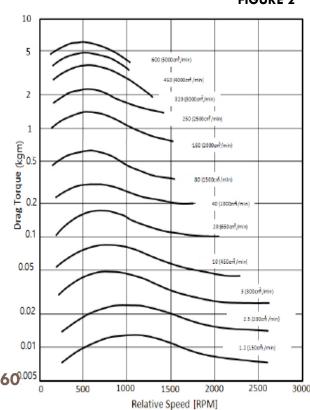
• Drag Torque

1.Definition: Drag torque is the resistive torque that occurs in a clutch when it is disengaged. In wet clutches, this is primarily due to the viscous shearing of the transmission fluid between the clutch plates.

2.Impact of Fluid Dynamics: The presence of transmission fluid in wet clutches leads to drag torque even when the clutch is not engaged. The fluid's viscosity and the relative motion between the clutch plates cause this resistive force.

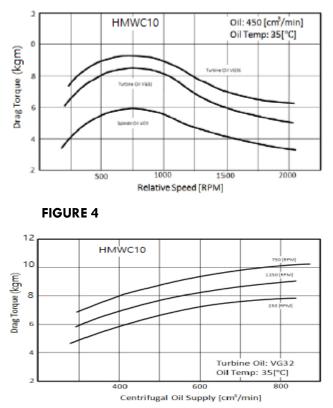
3.Factors Influencing Drag Torque:

1) Rotational Speed: At low speeds, drag torque increases linearly, while at high speeds, it tends to decrease due to the mixing of air with the fluid.


2) Fluid Flow Rate: A lower flow rate can help reduce drag torque, as excessive fluid can increase resistance.

3) Temperature: Higher temperatures can reduce fluid viscosity, thereby decreasing drag torque.

4.Design Considerations: Engineers must consider these factors when designing wet multi-disc clutches to optimize performance and minimize energy losses due to drag torque.


Understanding these correlations helps in designing more efficient clutch systems, improving overall transmission efficiency and vehicle performance.

HMWC/HMWB series use the special type of the plate to decrease the drag torque. Please refer to Figure 2, 3, and 4.


```
FIGURE 3
```


EXAMPLE ON INSTALLATION(HMWC)

The unit consists of four major components: the field, the rotor/hub assembly, the armature and the multiple friction disks. When the current is applied to the coil, the armature is pulled in, compressing the multiple disks and the friction between the disks transfers torque.

• Installation Procedure

1. Slide clutch body onto the shaft (key should already be in place in the key way in the shaft).

2. Make sure the clutch is secured axially from moving on the shaft. This can be done via a step in the shaft, set collar, center bolt or some type of sleeve.

3. The coupling (drive cup) should be attached to, (customer supplied) bearing mounted gear, pulley or direct drive coupling flange.

4. The gap between the clutch hub and the exterior of the coupling (drive cup shown as dimension A in the mounting diagram) should be as follows:

		Ta	ble 1			
Model	1.2	2.5	5	10	20	40
A [inch]	0.217	0.217	0.236	0.256	0.374	0.551
Model	80	160	250	320	450	600
A [inch]	0.670	0.906	0.984	1.181	1.417	1.417

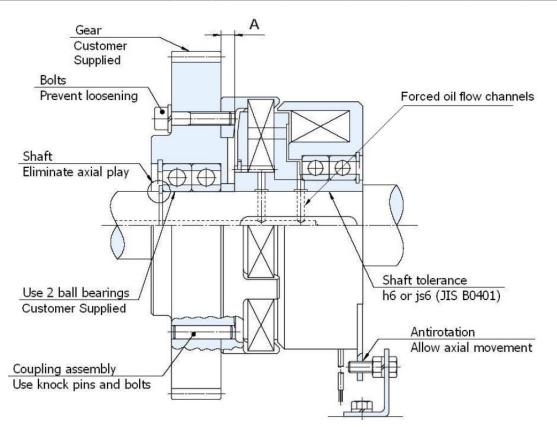
5. Concentricity of the coupling with the shaft should be within .002".

6. Make sure the drive cup (coupling assembly) is restrained from moving axially on the shaft. The inboard bearing race (via a sleeve or spacer) should contact the face of the clutch and the outboard bearing race or sleeve, should be restrained by a snap ring, retaining ring or some other positive contact device.

7. Make sure that the torque tab is loosely restrained to prevent the field from rotating due to the field bearing drag. Approximately 1/16th of axial and radial clearance should be allowed so that the field bearing is not pre-loaded restraint is loosely connected to the torque tab on the clutch.

Maintenance

1. This clutch is intended to be used wet and, therefore it should be properly lubricated with oil. Turbine oil, ISO VG32~68 is recommended under normal operating conditions. However, when drag torque is an issue


or operating at a particularly high or low speed or under cold temperature, machine oil, ISO $VG5\sim10$ is recommended.

EXAMPLE ON INSTALLATION(HMWC)

2. The torque of clutch is varies with exciting voltage. Make sure that DC24V is always supplied to the clutch. Note that even when the exciting voltage is DC 24V, the clutch terminal voltage can be lowered by the line resistance if the circuit is too long. Check the exciting voltage at the clutch field and make sure you register 24 volts.

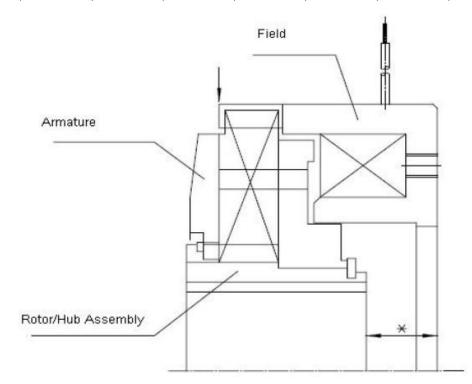
3. The clutch slips whenever it is engaged. The clutch discs wear and the wear rate increases gradually. This can be measured in the amount of release (disengaged) travel. The clutch requires no adjustment, but when the discs are very worn and the air gap exceeds the specified values the response time is influenced. At that point the discs in these units can be replaced. The amount of air gap wear rate is listed in Table 2.

	Tal	ole 2				
Model : HMWC	1.2	2.5	5	10	20	40
Initial release [inch]	0.031	0.031	0.039	0.055	0.063	0.071
Wear limit of release [inch]	0.071	0.071	0.079	0.114	0.122	0.126
Model : HMWC	80	160	250	320	450	600
Initial release [inch]	0.075	0.098	0.098	0.110	0.118	0.138
Wear limit of release [inch]	0.134	0.177	0.177	0.189	0.197	0.217

EXAMPLE ON INSTALLATION(HMWB)

The unit consists of four major components: the field, the rotor/hub assembly, the armature and the multiple friction disks. When the current is applied to the coil, the armature is pulled in, compressing the multiple disks and the friction between the disks functions as brake.

Installation Procedure

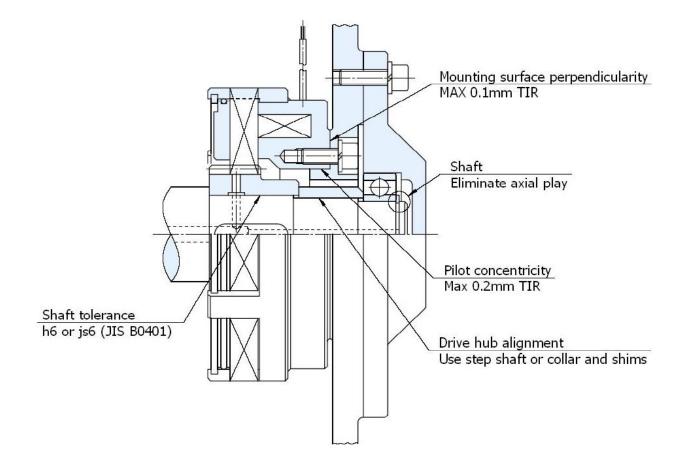

63

1. Mount the field to the machine frame using the four tapped holes provided. Concentricity of the field with the shaft should be less than 0.008" TIR. The perpendicularity of the field at the mounting surface should be less than 0.004" TIR.

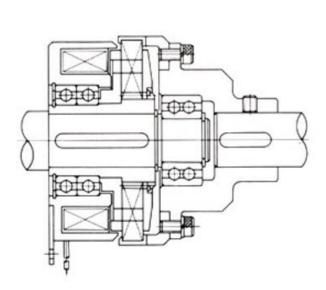
2. Next, the rotor hub assembly should be slid onto the shaft and a spacer (customer supplied) needs to be provided to set the proper distance to align the rotor/hub. Mount the rotor/hub assembly so that the dimension shown with * is as specified in the table 1 (+/- 0.0012"). When the rotor/hub assembly is mounted at the correct position, 6 out stoppers (tangs) from the field OD and the armature contact surface are aligned as shown with the arrow.

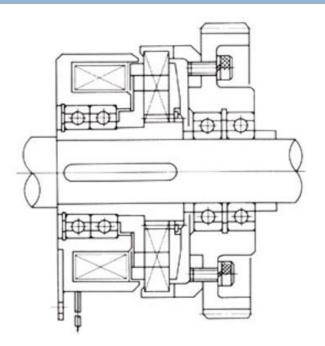
3. Once the proper alignment is achieved the inner rotor hub assembly should be held in place via a set collar or other locking mechanism.

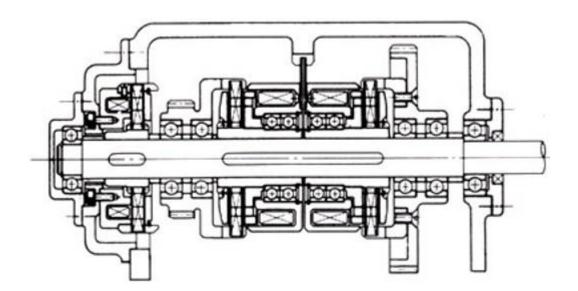
			Table .	l			
Model	1.2N	2.5N	5N	10N	20N	40N	80N
Dimension [inch]	0.669	0.709	0.827	0.669	0.709	0.551	0.551


EXAMPLE ON INSTALLATION(HMWB)

Maintenance


The friction disks on this unit wear due to slippage at the engagement, increasing the release. Although this unit does not require adjustments to the gap between the disks, when the release amount reaches the max, it affects the pull-in time. Replacing the friction disks is recommended.


1. Torque of this unit is determined by the voltage. Periodically, it should be checked if the specified voltage is supplied to the unit (When a long wire is used, the voltage at the unit can be lower than the voltage at the power supply).


2. This unit is wet type and should be properly lubricated with oil. Turbine oil, ISO VG32~68 is recommended under normal operating conditions. However, when drag torque is an issue or operating at a particularly high or low speed or under cold temperature, machine oil, ISO VG5~10 is recommended.

EXAMPLE ON INSTALLATION(HMWB)

HOJOON

OVERVIEW, FEATURES, APPLICATIONS, TORQUE RANGE

• Definition:

An **electromagnetic tooth clutch** is a specialized mechanical component designed to transmit torque between rotating shafts. Unlike traditional friction clutches, which rely on friction surfaces, tooth clutches engage positively through interlocking teeth or cogs. When an electric current flows through the clutch coil, it generates a magnetic field, causing the teeth to mesh together. This positive engagement ensures efficient power transfer and precise motion control.

• Features:

High Torque Density (Standard Static Torque: 2.5kgm~50kgm)

Compared to typical electromagnetic friction clutches, tooth clutches offer approximately three times more torque within the same diameter. This high torque density makes them advantageous for applications where space is limited, such as medical devices, printing machinery, and compact industrial equipment.

Compact Design:

Despite their impressive torque capacity, electromagnetic tooth clutches maintain a compact form factor. This feature is crucial for integrating them into tight spaces within machinery and systems.

• Precise Timing and Positioning:

The interlocking teeth provide precise timing during engagement and disengagement. This accuracy is essential for applications where synchronization matters, such as multi-station machinery.

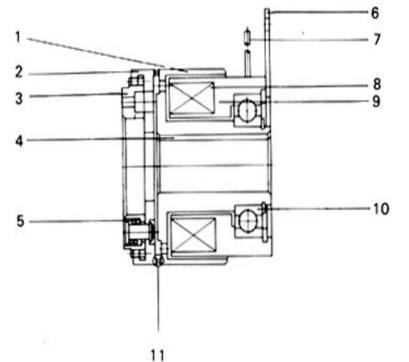
Positive Operation:

Tooth clutches engage without gradual friction, ensuring minimal slippage and efficient torque transfer. Think of them as puzzle pieces—when the current flows, the teeth lock together; when the current is cut off, they disengage.

• Applications:

- 1. Industrial Machinery: Tooth clutches find widespread use in various industrial settings:
- 2. Conveyor Systems: For precise control over material movement.
- 3. Printing Presses: Ensuring accurate paper feeding and registration.
- 4. Packaging Machinery: Synchronizing packaging processes.
- 5. Factory Automation: Enabling controlled motion in assembly lines.
- 6. Automotive Systems: In vehicles, electromagnetic tooth clutches serve several purposes:
 - 1) Differential Locks: Enhancing traction by locking differential gears.
 - 2) Transfer Cases: Allowing seamless switching between 2WD and 4WD modes.
 - 3) Limited-Slip Differentials: Balancing torque distribution between wheels.
- 7. Robotics and Automation: Precise motion control in robotics relies on tooth clutches.

Robotic arms, CNC machines, and automated handling systems benefit from their positive engagement.

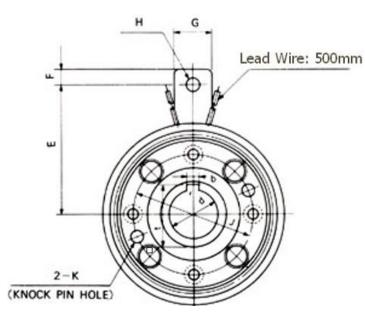

8. Medical Devices:

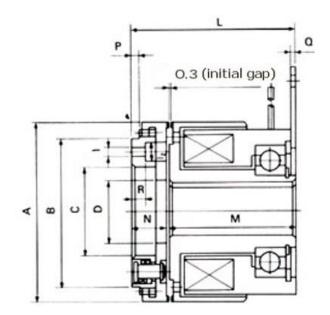
Tooth clutches are suitable for medical equipment where space constraints and precise motion are critical. Examples include surgical robots, diagnostic instruments, and imaging devices.

9. Other Applications:

67

- 1) Office Equipment: Copiers, printers, and scanners.
- 2) Textile Machinery: Ensuring synchronized fabric movement.
 - 3) Marine Systems: Controlling propeller pitch and marine winches.

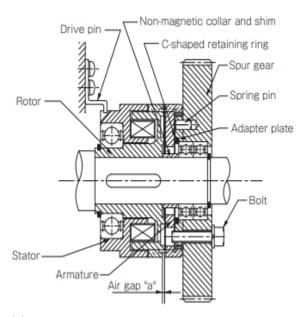

STRUCTURE & DIMENSION


NO.	PART NAME
1	Rotor
2	Armature
3	Armature Hub
4	Key Way
5	Coil Spring
6	Anti-rotation Tab
7	Lead Wires
8	Coil
9	Stator
10	Ball Bearing
11	Tooth

Specifications

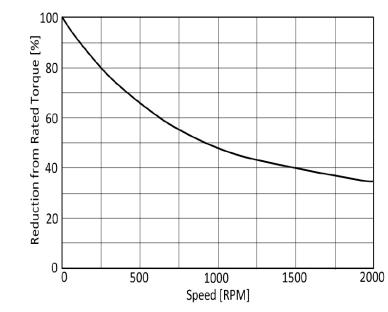
•

	STA			COIL			REA	⊳	GD	₂(kgm²)	
MODEL	STATIC TORQUE (kgm)	VOLTAGE (DC-V)	WATTAGE (W)	RESISTANCE (Ω)	CURRENT (A)	RMATURE JLL-IN TIME (sec)	(rpm) \RMATURE !LEASE TIME (sec)	MAX LLOWABLE SPEED	ROTOR	ARMATURE	MASS (kg)
HMZ-2.5	2.5		15	38.5	0.63	0.06	0.06	5,000	0.0010	0.0010	1.5
HMZ-5	5		23	25	0.96	0.07	0.07	4,500	0.0020	0.0018	2.0
HMZ-10	10	24	30	19.2	1.25	0.09	0.09	3,800	0.0044	0.0033	3.0
HMZ-16	16		35	16.5	1.46	0.10	0.10	3,500	0.0085	0.0061	5.0
HMZ-25	25		40	14.4	1.67	0.14	0.14	3,200	0.0140	0.0116	5.0
HMZ-50	50		50	11.5	2.08	0.17	0.17	2,700	0.0378	0.0240	8.5


MODEL	SHAFT HOLE							-			
MODEL	d	b	t	A	В	С	D	E	F	G	Н
HMZ-2.5	20	5	22	75	62	38	29	54	6	16	5.5
HMZ-5	25	7	28	85	70	45	34	58	6	16	5.5
HMZ-10	30	7	33	100	84	40	40	63	6	16	5.5
HMZ-16	35	10	38.5	110	90	46	46	68	6	16	5.5
HMZ-25	40	10	43.5	120	98	51	51	73	6	16	5.5
HMZ-50	50	12	53.5	140	112	62	62	88	10	24	8.5
		HOLE									
MODEL		HOLE		J	к	L	М	N	P	Q	R
MODEL	I ₁	HOLE	QTY	J	К	L	М	N	P	Q	R
MODEL HMZ-2.5	l ₁ 4.5		_	J 50	К 4.8	L 67	M 52	N 13.7	P 3	Q 2	R 5
		I ₂	QTY								
HMZ-2.5	4.5	І ₂ 8	QTY 4	50	4.8	67	52	13.7	3	2	5
HMZ-2.5 HMZ-5	4.5 5.5	I ₂ 8 10	QTY 4 4	50 58	4.8 5.8	67 72	52 55	13.7 15.5	3	2 2	5
HMZ-2.5 HMZ-5 HMZ-10	4.5 5.5 6.5	l ₂ 8 10 13	QTY 4 4 4	50 58 68	4.8 5.8 5.8	67 72 75	52 55 57	13.7 15.5 16.5	3 3 3	2 2 2	5 6 7

PRECAUTION OF MOUNTING & USE

Please refer to the right figure when you select the size of the tooth clutch. The tooth clutch is influenced by the way of mounting and vibration. Also, transmission torque will decrease if you increase the RPM. For the safety, it is recommended to refer to the figure.


Precaution of Mounting

This clutch is mounted for a through-shaft. The mounting example shown below is for mounting on an ordinary through-shaft.

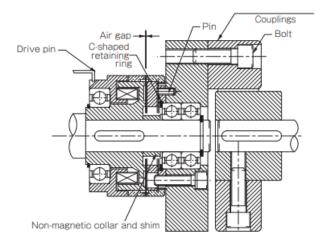
(1) Set the air gap between the teeth tips on the rotor and armature sides so that it is the value "a" in the dimensions table. Shims may be used to facilitate setting of the air gap.

(2) Use a collar made of a non-magnetic material (such as stainless steel or brass) to set the air gap. Use the reference values of the table right for the length of the collar

Collar lengths when using bearings to center

Size	Dimensions [mm]	Size	Dimensions [mm]
12	7.3	23	15.5
13	8.3	25	17.5
15	10.5	31	22.0
21	15.0	32	23.5

* Process the collar length to the negative tolerance and then make fine adjustments with shims.


* Five shims (0.1 mm in thickness) are provided for each shaft bore diameter.

* If not using the bearing to center, use a different collar design.

(3) When mounting, lock it securely in the axial direction so that there is no play (rattle) in the axial direction.
(4) We recommend a tolerance of H7 or h6 for the shaft when mounting.

(5) This clutch is for through-shafts; when using it on butt shafts, align one of the shafts with a bearing. Using a specific coupling makes it relatively easy to find the centers. See the mounting examples next.

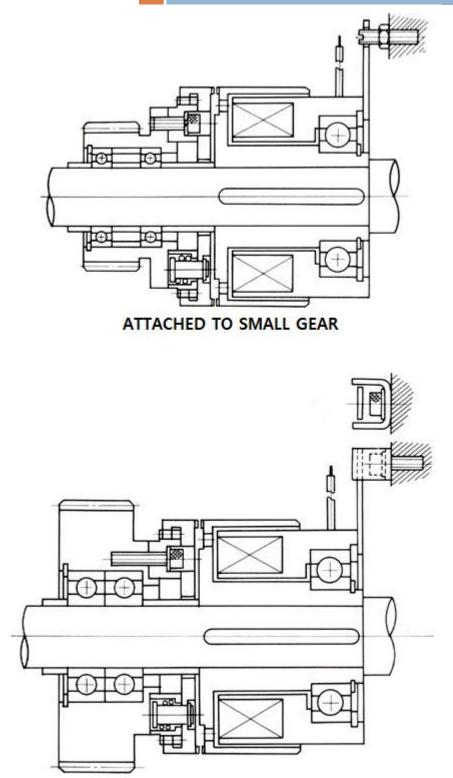
PRECAUTION OF MOUNTING & USE

Precaution of Use

(1) Tooth will not mesh together if the inertia on the driven side is too great. In such cases, we recommend lowering the rotation speed.

(2) With single position tooth shapes, drag torque will be generated by contact between tooth tips until the tooth reach their engaging position after pull-in. Tooth clutches are structured, however, so the tooth do not form a magnetic circuit, meaning that drag torque is low and hardly ever a problem. When load torque is very small compared to clutch torque, however, drag turning may occur on the driven side. In such cases, a brake must also be used, to prevent drag turning.

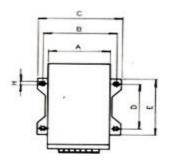
(3) The keyway cannot be aligned with the adapter plate mounting holes in the engaging position. When alignment is necessary, adjust position with the paired side elements of the clutch.

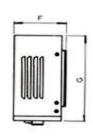

(4) When used in stationary engagement, teeth may fail to engage and come into contact with other tooth tips when pull-in occurs. Rotation in this condition may result in teeth slipping rather than engaging, so adjust the acceleration speed of the drive side to engage.

(5) The operating temperature is 0 $^\circ~$ C to 40 $^\circ~$ C.

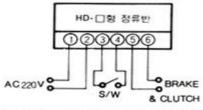
(6) The operating power supply of the clutch is DC 24 V. Keep fluctuations of the applied voltage within -10% to +5%. Since optimal BES model power supplies are available for the tooth clutch, we recommend one of these be used for both.

(7) Install a switch on the DC side to turn the clutch on and off. Operating times will be slower if it is installed on the AC side. A varistor to protect contacts should also be connected in parallel to the clutch

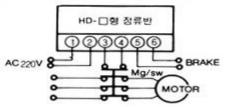

EXAMPLE ON MOUNTING



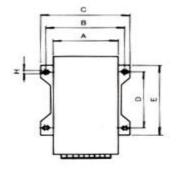
ATTACHED TO LARGE GEAR

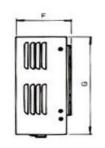

POWER SUPPLY

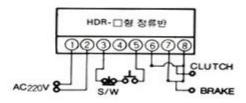
■ HD 型



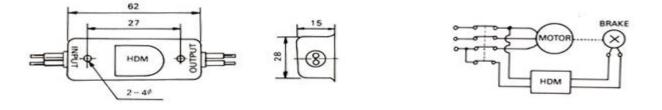
크러치 또는 브레이크만 단독 운전을 할 경우




모타와 A type 브레이크를 연동 사용할 경우


型式	入力電圧	出力電圧	容量	A	В	C	D	E	F	G	н
HD-3		DC24V	30VA	114	132	147	64	76	82	120	5
HD-6	AC220V		60VA	112	136	154	117	135	81	191	5
HD-8			80VA	143	166	186	90	105	81	150	5

■ HDR 型



크러치와 브레이크를 복합연동 사용할 경우

型式	入力電圧	出力電圧	容量	A	B	C	D	E	F	G	н
HDR-6		DC24V	60VA	112	136	154	117	135	81	191	5
HDR-10	AC220V		100VA	123	151	154	117	135	91	220	5
HDR-13	1		130VA	123	151	164	117	135	91	220	5

■ HDM 型(入力電圧:AC220V, 出力電圧:DC90V)

INTERCHANGE TABLE

	ELECTROMA	GNETIC CLUTCH			DOUBLE CLUT	CH UNIT	
HYOJOON	MIKIPULLEY	OGURA	CHAIN TAIL	HYOJOON	MIKIPULLEY	OGURA	CHAIN
	FLANG	E-mounted		HCC-06	121-06-10G	-	CDD0
HC- 🛛 🖻	101- ¤ -13G	-	-	HCC-08	121-08-10G	-	CDD1
HCH- • •	101- ¤ -15G		-	HCC-10	121-10-10G	-	CDD2
HCP- • •	101- ¤ -11G	-	-	HCC-12	121-12-10G	-	CDD0
	BEARIN	G-mounted		HCC-16	121-16-10G	-	CDD0
HCS- • •	CS- • -33G	-	-	HCC-20	121-20-10G	-	CDD0
HCSH- • •	CS- • -35G	-	-	HCC-25	121-25-10G	-	CDDC
HCSP- • •	CS- ¤ -31G	-	-				
					DOUBLE CLUTCH /	BRAKE UNIT	
	ELECTROMA	GNETIC BRAKE		нуојоол		OGURA	CHAIN
					MIKIPULLEY		CHAIN
HYOJOON	MIKIPULLEY	OGURA	CHAIN TAIL	HCCB-06	122-06-20G	-	
		d-mounted		HCCB-08	122-08-20G	-	CFG1
HB-06	111-06-13G	-	CDG0S6AA	HCCB-10	122-10-20G	-	CFG2
HB-08	111-08-13G	-	CDG1S5AA	HCCB-12	122-12-20G	-	CFG0
HB-10	111-10-13G		CDG2S5AA	HCCB-16	122-16-20G	-	CFG0
HB-12	111-12-13G	-	CDG005AA	HCCB-20	122-20-20G	-	CFG0
HB-16	111-16-13G	-	CDG010AA				
HB-20	111-20-13G	-	CDG020AA	M	OTOR-CONNECTED CL	UTCH/BRAKE UNI	Г
HB-25	111-25-13G	-	CDG040AA	HYOJOON	MIKIPULLEY	OGURA	CHAII
				HCBM- • • -4B	126- ¤ ¤ -4B	-	
	Shaft-	mounted					
HBR-06	111-06-12G	-	CG10S6AA(AB)	WORM	REDUCER INTERGRATI	D CLUTCH/BRAKE	UNIT
HBR-08	111-08-12G	-	CG11S5AA(AB)	HYOJOON	MIKIPULLEY	OGURA	CHAII
HBR-10	111-10-12G	-	CG12S5AA(AB)	HCBW- -SR	CBW- N-B	-	
HBR-12	111-12-12G	-	CG1005AA(AB)				
HBR-16	111-16-12G	-	CG1010AA(AB)				
HBR-20	111-20-12G	-	CG1020AA(AB)		WET-TYPE MUL		
HBR-25	111-25-12G	-	CG1040AA(AB)		LECTROMAGNETIC	LUTCH/ BRAKE	
				HYOJOON	MIKIPULLEY	OGURA	CHAI
	Stand	ard-shape			Clutch		
HBP-06	111-06-11G	-	CG20S6AA(AB)	HMWC-1.2	-	MWC-1.2	MWJ
HBP-08	111-08-11G	-	CG21S5AA(AB)	HMWC-2.5	-	MWC-2.5	MWJ
HBP-10	111-10-11G	-	CG22S5AA(AB)	HMWC-5	-	MWC-5	MWJ
HBP-12	111-12-11G	-	CG2005AA(AB)	HMWC-10	-	MWC-10	MWJ
HBP-16	111-16-11G	-	CG2010AA(AB)	HMWC-20	-	MWC-20	MWJ
HBP-20	111-20-11G	-	CG2020AA(AB)	HMWC-40	-	MWC-40	
HBP-25	111-25-11G	-	CG2040AA(AB)	HMWC-80	-	MWC-80	
				HMWC-160	-	MWC-160	
	CLUTCH/	BRAKE UNIT		HMWC-250	-	MWC-250	
NOOLOAH	MIKIPULLEY	OGURA	CHAIN TAIL	HMWC-320	-	MWC-320	
	Butt shaft	construction		HMWC-450	-	MWC-450	
ICB-06-12	125-06-12EG	-	CDA0S6AA	HMWC-600	-	MWC-600	
HCB-08-12	125-08-12EG	-	CDA1S5AA		Brake		
HCB-10-12	125-10-12EG	-	CDA2S5AA	HMWB-1.2	-	MWB-1.2	MWI
HCB-12-12	125-12-12EG	-	CDA005AA	HMWB-2.5	-	MWB-2.5	MWI
	125-16-12EG	-	CDA010AA	HMWB-5	-	MWB-5	MWI
HCB-16-12	125-20-12EG	-	CDA020AA	HMWB-10	-	MWB-10	MWI
		aft construction		HMWB-20	-	MWB-20	MWI
			CDB0S6AA	HMWB-40	-	MWB-40	
HCB-20-12 HCB-20-12 HCB-06-20	121-06-20G				-	MWB-80	
HCB-20-12	121-06-20G	_	CDB1S5AA	HMWB-80		1	
HCB-20-12 HCB-06-20		-	CDB1S5AA CDB2S5AA	HMWB-80	-	MWB-160	
HCB-20-12 HCB-06-20 HCB-08-20	121-06-20G 121-08-20G	-			-	MWB-160	
ICB-06-20 ICB-06-20 ICB-08-20 ICB-10-20 ICB-12-20	121-06-20G 121-08-20G 121-10-20G 121-12-20G	-	CDB2S5AA CDB005AA				
ICB-20-12 ICB-06-20 ICB-08-20 ICB-10-20	121-06-20G 121-08-20G 121-10-20G	-	CDB2S5AA		- TOOTH CLI MIKIPULLEY		CHAII

BANDOBEARING

- Address: A-5-136, Gurojungang-ro197, Guro-gu, Seoul, South Korea, 08216
- Tel: 0082-2-2677-2400
- Fax: 0082-2-2677-0551
- MP & Whatsapp: 0082-10-6710-3670
- E-mail: bandobearing@ymail.com
- Website: http://www.bandobearing.net
- Skype: kimkihyun3
- Wehat: BANDOBEARINGSANGSA
- LINE: bandobearing